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Summary

A common component of frameworks for building robust and accurate learning models is a
utility for performing sets of perturbations on the input data. In machine vision, for example,
rotating, cropping, stretching, warping, and flipping training images have all been shown to
increase model accuracy, and reduce certain kinds of overfitting (Chen, Dobriban, & Lee,
2019). Popular machine vision libraries like PyTorch, Tensorflow, and FastAI all have built-in
utilities for performing these transformations (Abadi et al., 2015; Howard & Gugger, 2020;
Paszke et al., 2019).
In the domain of natural language processing (NLP), there is an analogous set of transfor-
mations that have been shown to increase model accuracy. Common transformations include
adding superfluous whitespace, swapping an individual word for a synonym, replacing a word
with a misspelled version, and round-tripping a sentence through a translation model into
another language and back again (Coulombe, 2018; Zhang, Zhao, & LeCun, 2015). Some
transforms, like misspellings or synonyms, attempt to directly model an unobserved but com-
mon change in the input features. Others, like adding a space in the middle of a word, act
similarly to dropout for word-level models, in that they effectively remove the word as an input
(e.g., the two halves of the word are unlikely to be present in the vocabulary).
For specific tasks in NLP, principally in language modeling, model improvement can be effected
with incorrect examples of input data, so that the model learns not to produce them. This
practice is called negative sampling, and was used in the development of both word2vec
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) and GLoVE (Pennington, Socher, &
Manning, 2014). This can be done with words sampled from the whole vocabulary, or in a
more targeted fashion by including related, but inappropriate tokens. For example, in English,
“I ate pizza for lunch” is a valid sentence. Replacing “pizza” and “lunch” with a higher level
category (these are called hypernyms), produces – “I ate dish for meal” an output that is
technically well-formed, but violates the Gricean expectation of utility.
There are also sets of transforms whose aim is to make models more robust in the face of
adversarial inputs. These transforms include replacing letters with symbols that are visually
similar, adding nuisance characters around words, adding random characters at the end of the
document, and appending the word “love” to the end of a sentence (Gröndahl, Pajola, Juuti,
Conti, & Asokan, 2018). Adding nuisance characters, or replacing characters with symbols,
disrupts the behavior of vocabulary-based models, in that they will not know how to encode
an input like “sch00l”, although it is visually clear to an experienced reader of English that this
is the word “school”. Adding words with very positive or very negative connotations have been
shown to be an effective way to disrupt sentiment classifiers, which often rely on counting the
number of times such words appear.
Here, we introduce niacin, a python library for performing a large set of these commonly-used
text transformations on a given input, with some probability. For example, a commonly used
text augmentation technique is to replace individual words in a sentence with ones that are
closely related. The idea here is that the sentences “I am unhappy” and “I am sad” convey a

Niederhut, D., (2020). niacin: A Python package for text data enrichment. Journal of Open Source Software, 5(50), 2136. https://doi.org/
10.21105/joss.02136

1

https://doi.org/10.21105/joss.02136
https://github.com/openjournals/joss-reviews/issues/2136
https://github.com/deniederhut/niacin
https://doi.org/10.5281/zenodo.3875715
http://oliviaguest.com
https://github.com/BayesforDays
https://github.com/sara-02
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02136
https://doi.org/10.21105/joss.02136


similar semantic value, even though the individual words are different. In niacin, you can use
a function called add_synonyms for this, which, at a replacement probability of 1.0:

>>> add_synonyms("this is the song that never ends and it goes on
and on my friends", p=1.0)

produces outputs like this:

this is the vocal that ne’er terminate and it go away on and on my friend

There are also functions for replacing words with common misspellings:

>>> add_misspelling("There are also functions for replacing words with
their common misspellings", 1.0)

There are aslo functions for replacing words withh thier common misspellings

replacing contractions:

>>> add_contractions('You are rad', 1.0)

you’re rad

and substituting numbers and symbols for letters they resemble:

>>> add_leet("Hello, how are you?", 1.0)

H3110, h0w r u?

When possible, function documentation links back to the paper which originally suggested or
implemented the transformation, should a user want more information about how to apply
the function in practice. For example, replacing every single character in your text input will
render it useless, but there is empirical work suggesting that no more than a 10% probability
of replacement should be used. Data sources (principally WordNet (Miller, 1995), but also
Wikipedia) are always cited.
In 2018, when niacin was first published online, there were a small number of libraries that
contain text augmentation functions, for example noisemix and EDA (Wei & Zou, 2019). In
general, these were published only as a part of a conference paper, and were not actively
maintained. EDA, for example, contains the warning “The code is not documented”. They
also tended to be limited to the scope of the transformations included in the initial paper.
There is not an exact one-to-one correspondence between all the capabilities of these libraries,
but this table shows an approximation of comparing features across them:

transformation niacin noisemix eda
synonym replacement x x x
hypernym replacement x
hyponym replacement x
swap word order x x x
swap character order x x
remove articles x
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transformation niacin noisemix eda
contract/expand word x
remove punctuation x x
add/delete space x x
add/delete letter x x
add typo x x
add misspelling x
wrap in parens x
add applause emoji x
add ‘love’ x
add random characters x
add backtranslation x

More recently, other software tools have been published that cover some parts of niacin’s
functionality, and extend further in other areas. nlpaug, for example, includes large language
models like BERT that can perform synonym replacement in a way that is context-dependent
– something that wordnet cannot do (Ma, 2019). However, it does not include some of the
character-based transformations, nor the adversarial ones. TextAttack implements several
recently published methods in model-based adversarial attacks on language models, in both
the white-box and black-box domain, and includes a small number of augmentation techniques
in addition (Morris, Lifland, Yoo, & Qi, 2020).
It is our hope that having a collection of already-implemented transformations with a uniform
interface will make it easy for researchers to include them in their own data processing pipelines.
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