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Summary

Electron spins in molecules and materials may be manipulated and used to store information,
and hence they are interesting resources for quantum technologies. A way to understand the
physical properties of electron spins is to probe their interactions with electromagnetic fields.
Such interactions can be described by using a so-called spin Hamiltonian, with parameters
derived from either experiments or calculations. For a single electron spin (e.g., associated to
a point-defect in a semiconductor or insulator), the leading terms in the spin Hamiltonian are

H = µBB · g · S+ S ·D · S

where µB is the Bohr magneton, S is the electron spin operator, B is an external magnetic
field, g and D are rank-2 tensors that characterize the strength of the Zeeman interaction,
and the zero-field splitting (ZFS), respectively. Experimentally, the spin Hamiltonian param-
eters g and D may be obtained by electron paramagnetic resonance (EPR). The ZFS tensor
describes the lifting of degeneracy of spin sublevels in the absence of external magnetic fields,
and is an important property of open-shell molecules and spin defects in semiconductors with
spin quantum number S ≥ 1. The ZFS tensor can be predicted from first-principles calcu-
lations, thus complementing experiments and providing valuable insight into the design of
novel molecules and materials with desired spin properties. Furthermore, the comparison of
computed and measured ZFS tensors may provide important information on the atomistic
structure and charge state of defects in solids, thus helping to identify the defect configu-
ration present in experimental samples. Therefore, the development of robust methods for
the calculation of the ZFS tensor is an interesting topic in molecular chemistry and materials
science.
In this work we describe the code PyZFS for the calculation of the ZFS tensor D of molecules
and solids, based on wavefunctions obtained from density functional theory (DFT) calculations.
For systems without heavy elements, i.e., where spin-orbit coupling is negligible, magnetic spin-
spin interactions are the dominant ones in the determination of the ZFS tensor. For molecules
and materials with magnetic permeability close to the vacuum permeability µ0, the spin-spin
ZFS tensor evaluated using the DFT Kohn-Sham wavefunctions, is given by Harriman (1978):
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where a, b = x, y, z are Cartesian indices; γe is the gyromagnetic ratio of electrons; the
summation runs over all pairs of occupied Kohn-Sham orbitals; χij = ±1 for parallel and
antiparallel spins, respectively; Φij(r, r′) are 2 × 2 determinants formed from Kohn-Sham
orbitals ϕi and ϕj , Φij(r, r′) = 1√

2

[
ϕi(r)ϕj(r′)− ϕi(r′)ϕj(r)].
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Several quantum chemistry codes (for example, ORCA (Neese, 2012)) include the implemen-
tation of ZFS tensor calculations for molecules, where electronic wavefunctions are represented
using Gaussian basis sets. However, few open-source codes are available to compute ZFS ten-
sors using plane-wave basis sets, which are usually the basis sets of choice to study condensed
systems. In PyZFS we implement the evaluation of spin-spin ZFS tensors using plane-wave ba-
sis sets. The double integration in real space is reduced to a single summation over reciprocal
lattice vectors through the use of Fast Fourier Transforms (Rayson & Briddon, 2008).
We note that a large-scale DFT calculations can yield wavefunction files occupying tens of
gigbytes. Therefore, proper distribution and management of data is critical. In PyZFS, the
summation over pairs of Kohn-Sham orbitals is distributed into a square grid of processors
through the use of the Message Passing Interface (MPI), which significantly reduces the CPU
time and memory cost per processor.
PyZFS can use wavefunctions generated by various plane-wave DFT codes as input. For
instance, it can directly read wavefunctions from Quantum Espresso (Giannozzi et al., 2009)
in the HDF5 format and from Qbox (Gygi, 2008) in the XML format. The standard cube
file format is also supported. PyZFS features a modular design and utilizes abstract classes
for extensibility. Support for new wavefunction format may be easily implemented by defining
subclasses of the relevant abstract class and overriding corresponding abstract methods.
Since its development, PyZFS has been adopted to predict ZFS tensors for spin defects in
semiconductors, and facilitated the discovery of novel spin defects (Seo, Ma, Govoni, & Galli,
2017) and the study of spin-phonon interactions in solids (Whiteley et al., 2019). PyZFS has
also been adopted to generate benchmark data for the development of methods to compute
the ZFS tensor using all electron calculations on finite element basis sets (Ghosh, Ma, Gavini,
& Galli, 2019). Thanks to the parallel design of the code, PyZFS can perform calculations for
defects embedded in large supercells. For example, the calculations performed by Whiteley
et al. (2019) used supercells that contain more than 3000 valence electrons, and are among
the largest first-principles calculations of ZFS tensors reported at the time this document was
written.
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