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Summary

Transcriptomic analysis is used to capture the molecular state of a cell or sample in many bio-
logical and medical applications. In addition to identifying alterations in activity at the level of
individual genes, understanding changes in the gene networks that regulate fundamental bio-
logical mechanisms is also an important objective of molecular analysis. As a result, databases
that describe biological pathways are increasingly used to assist with the interpretation of re-
sults from large-scale genomics studies. Incorporating information from biological pathways
and gene regulatory networks into a genomic data analysis is a popular strategy, and there
are many methods that provide this functionality for gene expression data. When developing
or comparing such methods, it is important to gain an accurate assessment of their perfor-
mance. Simulation-based validation studies are frequently used for this. This necessitates
the use of simulated data that correctly accounts for pathway relationships and correlations.
Here we present a versatile statistical framework to simulate correlated gene expression data
from biological pathways, by sampling from a multivariate normal distribution derived from
a graph structure. This procedure has been released as the graphsim R package on CRAN
and GitHub (https://github.com/TomKellyGenetics/graphsim) and is compatible with any
graph structure that can be described using the igraph package. This package allows the
simulation of biological pathways from a graph structure based on a statistical model of gene
expression.

Introduction: inference and modelling of biological networks

Network analysis of molecular biological pathways has the potential to lead to new insights into
biology and medical genetics (Barabási & Oltvai, 2004; Hu, Thomas, & Brunak, 2016). Since
gene expression profiles capture a consistent signature of the regulatory state of a cell (Ozsolak
& Milos, 2011; Perou et al., 2000; Svensson, Vento-Tormo, & Teichmann, 2018), they can
be used to analyse complex molecular states with genome-scale data. However, biological
pathways are often analysed in a reductionist paradigm as amorphous sets of genes involved
in particular functions, despite the fact that the relationships defined by pathway structure
could further inform gene expression analyses. In many cases, the pathway relationships are
well-defined, experimentally-validated, and are available in public databases (Croft et al.,
2014). As a result, network analysis techniques can play an important role in furthering our
understanding of biological pathways and aiding in the interpretation of genomics studies.
Gene networks provide insights into how cells are regulated, by mapping regulatory interac-
tions between target genes and transcription factors, enhancers, and sites of epigenetic marks
or chromatin structures (Barabási & Oltvai, 2004; Yamaguchi, Yoshida, Imoto, Higuchi, &
Miyano, 2007). Inference using these regulatory interactions genomic analysis has the poten-
tial to radically expand the range of candidate biological pathways to be further explored, or to
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improve the accuracy of bioinformatics and functional genomic analysis. A number of methods
have been developed to utilise timecourse gene expression data (Arner et al., 2015; Yamaguchi
et al., 2007) using gene regulatory modules in state-space models and recursive vector au-
toregressive models (Hirose et al., 2008; Shimamura et al., 2009). Various approaches to
gene regulation and networks at the genome-wide scale have led to novel biological insights
(Arner et al., 2015; Komatsu et al., 2013), however, inference of regulatory networks has thus
far primarily relied on experimental validation or resampling-based approaches to estimate
the likelihood of specific network modules being predicted (Hawe, Theis, & Heinig, 2019;
Markowetz & Spang, 2007).
Simulating datasets that account for pathway structure are of particular interest for bench-
marking regulatory network inference techniques and methods being developed for genomics
data containing complex biological interactions (Saelens, Cannoodt, Todorov, & Saeys, 2019;
Schaffter, Marbach, & Floreano, 2011). Dynamical models using differential equations have
been employed, such as by GeneNetWeaver (Schaffter et al., 2011), to generate simulated
datasets specifically for benchmarking gene regulatory network inference techniques. There is
also renewed interest in modelling biological pathways and simulating data for benchmarking
due to the emergence of single-cell genomics technologies and the growing number of bioin-
formatics techniques developed to use this data (Saelens et al., 2019; Zappia, Phipson, &
Oshlack, 2017). Packages such as ‘splatter’ (Zappia et al., 2017), which uses the gamma-
poisson distribution, have been developed to model single-cell data. SERGIO (Dibaeinia &
Sinha, 2019) and dyngen (Cannoodt, Saelens, Deconinck, & Saeys, 2020) build on this by
adding gene regulatory networks and multimodality respectively. These methods have been
designed based on known deterministic relationships or synthetic reaction states, to which
stochasticity is then added. However, it is computationally-intensive to model these reactions
at scale or run many iterations for benchmarking. In some cases, it is only necessary to model
the statistical variability and “noise” of RNA-Seq data in order to evaluate methods in the
presence of multivariate correlation structures.
There is a need, therefore, for a systematic framework for statistical modelling and simulation
of gene expression data derived from hypothetical, inferred or known gene networks. Here
we present a package to achieve this, where samples from a multivariate normal distribu-
tion are used to generate normally-distributed log-expression data, with correlations between
genes derived from the structure of the underlying pathway or gene regulatory network. This
methodology enables simulation of expression profiles that approximate the log-transformed
and normalised data from microarray studies, as well as bulk or single-cell RNA-Seq experi-
ments. This procedure has been released as the graphsim package to enable the generation
of simulated gene expression datasets containing pathway relationships from a known un-
derlying network. These simulated datasets can be used to evaluate various bioinformatics
methodologies, including statistical and network inference procedures.

Methodology and software

Here we present a procedure to simulate gene expression data with correlation structure de-
rived from a known graph structure. This procedure assumes that transcriptomic data have
been generated and follow a log-normal distribution (i.e., log(Xij) ∼ MVN(µ,Σ), where µ
and Σ are the mean vector and variance-covariance matrix respectively, for gene expression
data derived from a biological pathway) after appropriate normalisation (Law, Chen, Shi, &
Smyth, 2014; Li, Piao, Shon, & Ryu, 2015). Log-normality of gene expression matches the as-
sumptions of the popular limma package (Matthew E R. et al., 2015), which is often used for
the analysis of intensity-based data from gene expression microarray studies and count-based
data from RNA-Seq experiments. This approach has also been applied for modelling UMI-
based count data from single-cell RNA-Seq experiments in the DESCEND R package (Wang et
al., 2018).
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In order to simulate transcriptomic data, a pathway is first constructed as a graph structure,
using the igraph R package (Csardi & Nepusz, 2006), with the status of the edge relationships
defined (i.e, whether they activate or inhibit downstream pathway members). This procedure
uses a graph structure such as that presented in Figure 1a. The graph can be defined by an
adjacency matrix, A (with elements Aij), where

Aij =

{
1 if genes i and j are adjacent
0 otherwise

A matrix, R, with elements Rij , is calculated based on distance (i.e., number of edges con-
tained in the shortest path) between nodes, such that closer nodes are given more weight than
more distant nodes, to define inter-node relationships. A geometrically-decreasing (relative)
distance weighting is used to achieve this:

Rij =


1 if genes i and j are adjacent
( 12 )

dij if a path can be found between genes i and j

0 if no path exists between genes i and j

where dij is the length of the shortest path (i.e., minimum number of edges traversed) between
genes (nodes) i and j in graph G. Each more distant node is thus related by 1

2 compared
to the next nearest, as shown in Figure 2b. An arithmetically-decreasing (absolute) distance
weighting is also supported in the graphsim R package which implements this procedure:

Rij =


1 if genes i and j are adjacent
1− dij

diam(G) if a path can be found between genes i and j

0 if no path exists between genes i and j

Assuming a unit variance for each gene, these values can be used to derive a Σ matrix:

Σij =

{
1 if i = j

ρRij otherwise

where ρ is the correlation between adjacent nodes. Thus covariances between adjacent
nodes are assigned by a correlation parameter (ρ) and the remaining off-diagonal values in
the matrix are based on scaling these correlations by the geometrically weighted relationship
matrix (or the nearest positive definite matrix for Σ with negative correlations).

Computing the nearest positive definite matrix is necessary to ensure that the variance-
covariance matrix can be inverted when used as a parameter in multivariate normal simu-
lations, particularly when negative correlations are included for inhibitions (as shown below).
Matrices that cannot be inverted occur rarely with biologically plausible graph structures but
this approach allows for the computation of a plausible correlation matrix when the given
graph structure is incomplete or contains loops. When required, the nearest positive definite
matrix is computed using the nearPD function of the Matrix R package (Bates & Maechler,
2016) to perform Higham’s algorithm (Higham, 2002) on variance-covariance matrices. The
graphsim package gives a warning when this occurs.

Illustrations

Generating a Graph Structure

The graph structure in Figure 1a was used to simulate correlated gene expression data by
sampling from a multivariate normal distribution using the mvtnorm R package (Genz &
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Bretz, 2009; Genz et al., 2016). The graph structure visualisation in Figure 1 was specifically
developed for (directed) igraph objects in and is available in the graphsim package. The
plot_directed function enables customisation of plot parameters for each node or edge,
and mixed (directed) edge types for indicating activation or inhibition. These inhibition links
(which occur frequently in biological pathways) are demonstrated in Figure 1b.
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(b) Inhibiting pathway structure

Figure 1: Simulated graph structures. A constructed graph structure used as an example to
demonstrate the simulation procedure in Figures 2 and 3. Activating links are denoted by black
arrows and inhibiting links by red edges.

A graph structure can be generated and plotted using the following commands in R:

#install packages required (once per computer)
install.packages("graphsim")

#load required packages (once per R instance)
library("graphsim")
#load packages for examples
library("igraph"); library("gplots"); library("scales")

#generate graph structure
graph_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"), c("D", "E"),

c("D", "F"), c("F", "G"), c("F", "I"), c("H", "I"))
graph <- graph.edgelist(graph_edges, directed = TRUE)

#generate parameters for inhibitions for each edge in E(graph)
state <- c(1, 1, -1, 1, 1, 1, 1, -1)
#plot graph structure with inhibitions
plot_directed(graph, state=state, layout = layout.kamada.kawai,

cex.node = 2, cex.arrow = 4, arrow_clip = 0.2)

Generating a Simulated Expression Dataset

The correlation parameter of ρ = 0.8 is used to demonstrate the inter-correlated datasets
using a geometrically-generated relationship matrix (as used for the example in Figure 2c).
This Σ matrix was then used to sample from a multivariate normal distribution such that
each gene had a mean of 0, standard deviation 1, and covariance within the range [0, 1]
so that the off-diagonal elements of Σ represent correlations. This procedure generated a
simulated (continuous normally-distributed) log-expression profile for each node (Figure 2e)
with a corresponding correlation structure (Figure 2d). The simulated correlation structure
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closely resembled the expected correlation structure (Σ in Figure 2c) even for the relatively
modest sample size (N = 100) illustrated in Figure 2. Once a gene expression dataset
comprising multiple pathways has been generated (as in Figure 2e), it can then be used to
test procedures designed for analysis of empirical gene expression data (such as those generated
by microarrays or RNA-Seq) that have been normalised on a log-scale.
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(e) Simulated expression data (log scale)

Figure 2: Simulating expression from a graph structure. An example of a graph structure (a) that
has been used to derive a relationship matrix (b), Σ matrix (c) and correlation structure (d) from the
relative distances between the nodes. Non-negative values are coloured white to red from 0 to 1 (e).
The Σ matrix has been used to generate a simulated expression dataset of 100 samples (coloured
blue to red from low to high) via sampling from the multivariate normal distribution. Here genes with
closer relationships in the pathway structure show a higher correlation between simulated values.

The simulated dataset can be generated using the following code:

#plot relationship matrix
heatmap.2(make_distance_graph(graph, absolute = FALSE),
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scale = "none", trace = "none", col = colorpanel(50, "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))

#plot sigma matrix
heatmap.2(make_sigma_mat_dist_graph(graph, cor = 0.8, absolute = FALSE),

scale = "none", trace = "none", col = colorpanel(50, "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))

#simulate data
expr <- generate_expression(100, graph, cor = 0.8, mean = 0,

comm = FALSE, dist =TRUE, absolute = FALSE, state = state)
#plot simulated correlations
heatmap.2(cor(t(expr)), scale = "none", trace = "none",

col = colorpanel(50, "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))

#plot simulated expression data
heatmap.2(expr, scale = "none", trace = "none", col = bluered(50),

colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)), labCol = "")

The simulation procedure (Figure 2) can similarly be used for pathways containing inhibitory
links (Figure 3) with several refinements. With the inhibitory links (Figure 3a), distances
are calculated in the same manner as before (Figure 3b) with inhibitions accounted for by
iteratively multiplying downstream nodes by −1 to form modules with negative correlations
between them (Figures 3c and 3d). A multivariate normal distribution with these negative
correlations can be sampled to generate simulated data (Figure 3e).
The following changes are needed to handle inhibitions:

#generate parameters for inhibitions
state <- c(1, 1, -1, 1, 1, 1, 1, -1)
plot_directed(graph, state=state, layout = layout.kamada.kawai,

cex.node=2, cex.arrow=4, arrow_clip = 0.2)

#plot sigma matrix for inhibitions
heatmap.2(make_sigma_mat_dist_graph(graph, state, cor = 0.8, absolute = FALSE),

scale = "none", trace = "none", col = colorpanel(50, "blue", "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))

#simulate data for inhibitions
expr <- generate_expression(100, graph, state, cor = 0.8, mean = 0,

comm = FALSE, dist =TRUE, absolute = FALSE)

The simulation procedure is also demonstrated here (Figure 4) on a pathway structure for a
known biological pathway (Reactome pathway R-HSA-2173789): “TGF-β receptor signaling
activates SMADs” (Figure 4a) derived from the Reactome database version 52 (Croft et al.,
2014). Distances are calculated in the same manner as before (Figure 4b) producing blocks
of correlated genes (Figures 4c and 4d). This shows that the multivariate normal distribution
can be sampled to generate simulated data to represent expression with the complexity of a
biological pathway (Figure 4e). Here SMAD7 exhibits negative correlations with the other
SMADs consistent with its functions as an “inhibitor SMAD” which competitively inhibits
SMAD4.
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Figure 3: Simulating expression from graph structure with inhibitions. An example of a graph
structure (a), that has been used to derive a relationship matrix (b), Σ matrix (c), and correlation
structure (d), from the relative distances between the nodes. These values are coloured blue to red
from −1 to 1 (e). This has been used to generate a simulated expression dataset of 100 samples
(coloured blue to red from low to high) via sampling from the multivariate normal distribution. Here
the inhibitory relationships between genes are reflected in negatively correlated simulated values.

We can import the graph structure into R as follows and run simulations as above:

#import graph from data
graph <- identity(TGFBeta_Smad_graph)
#generate parameters for inhibitions
state <- E(graph)$state

plot_directed(graph, state = state, layout = layout.kamada.kawai,
border.node=alpha("black", 0.75), fill.node="lightblue",
col.arrow = c(alpha("navyblue", 0.25), alpha("red", 0.25))[state],
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cex.node = 1.5, cex.label = 0.8, cex.arrow = 2)

These simulated datasets can also be used for simulating gene expression data within a graph
network to test genomic analysis techniques. Correlation structure can be included in datasets
generated for testing whether true positive genes or samples can be detected in a sample with
the background of complex pathway structure.
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Figure 4: Simulating expression from a biological pathway graph structure. The graph structure
(a) of a known biological pathway, ”TGF-β receptor signaling activates SMADs” (R-HSA-2173789),
was used to derive a relationship matrix (b), Σ matrix (c) and correlation structure (d) from the
relative distances between the nodes. These values are coloured blue to red from −1 to 1 (e). This
has been used to generate a simulated expression dataset of 100 samples (coloured blue to red from
low to high) via sampling from the multivariate normal distribution. Here modules of genes with
correlated expression can be clearly discerned.
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Summary and discussion

Biological pathways are of fundamental importance to understanding molecular biology. In
order to translate findings from genomics studies into real-world applications such as improved
healthcare, the roles of genes must be studied in the context of molecular pathways. Here
we present a statistical framework to simulate gene expression from biological pathways, and
provide the graphsim package in R to generate these simulated datasets. This approach
is versatile and can be fine-tuned for modelling existing biological pathways or for testing
whether constructed pathways can be detected by other means. In particular, methods to
infer biological pathways and gene regulatory networks from gene expression data can be
tested on simulated datasets using this framework. The package also enables simulation of
complex gene expression datasets to test how these pathways impact on statistical analysis of
gene expression data using existing methods or novel statistical methods being developed for
gene expression data analysis. This approach is intended to be applied to bulk gene expression
data but could in principle be adapted to modelling single-cell or different modalities such as
genome-wide epigenetic data.

Computational details

Complete examples of code needed to produce the figures in this paper are avail-
able in the Rmarkdown version in the package GitHub repository (https://github.com/
TomKellyGenetics/graphsim). Further details are available in the vignettes as well.
The results in this paper were obtained using R 4.0.2 with the igraph 1.2.5 Matrix 1.2-17,
matrixcalc 1.0-3, and mvtnorm 1.1-1 packages. R itself and all dependent packages used are
available from the Comprehensive Archive Network (CRAN) at https://CRAN.R-project.org.
The graphsim 1.0.0 package can be installed from CRAN and the issues can be reported to the
development version on GitHub. This package is included in the igraph.extensions library
on GitHub (https://github.com/TomKellyGenetics/igraph.extensions) which installs various
tools for igraph analysis. This software is cross-platform and compatible with installations
on Windows, Mac, and Linux operating systems. Updates to the package (graphsim 1.0.0)
will be released on CRAN.
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