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Summary
Utopia is a modeling framework that supports the entire workflow of computational scientists
in the field of complex and evolving systems. It is designed to facilitate collaborative research
and flexible model development while maintaining high individual freedom in implementation
and analysis. Utopia includes a C++ library for model implementations and data writing and
a Python frontend for simulation control, data analysis, and plotting. A basic set of models is
distributed alongside the framework.

Applications of Utopia span a wide range both in terms of the target audience and features
relevant in each domain: For researchers, Utopia offers a rich toolkit for model implementation,
data analysis, and generation of simulation data—up to and including large-scale simulations on
distributed, high-performance computing hardware. In a teaching context, students can focus
on the investigation of readily provided models using their own machines, e.g. by performing
easily available sensitivity analysis. Furthermore, by developing new library functionality,
collaborators can easily share new features and thus enhance Utopia’s applicability for all users
of the framework. This makes Utopia a valuable tool for both research in and teaching of
complex and evolving systems.

Utopia is available as Docker image from DockerHub1 or can be compiled from source.

Research of Complex Systems
Many physical, environmental, and socio-cultural questions are studied in the field of complex
and evolving systems (Holland, 2006; Levin, 2003). These systems feature a hierarchic, self-
organized structure with non-linear interactions between their compartments and often exhibit
emergent macroscopic properties. We call such systems “evolving” when the dimension and
structure of their state space or the nature of their internal interactions can change under
varying external forcings, in contrast to systems that merely traverse a static state space
volume.

Given their high-dimensional, non-linear, and oftentimes open and fundamentally interconnected
nature, laboratory-scale versions of complex and evolving systems often do not exist and
investigating them experimentally is difficult. This is why they are typically studied through
heuristic computer models, in search of an abstract understanding of their fundamental processes.
As model constants and effective parameters remain unknown, researchers sample the usually

1https://hub.docker.com/r/ccees/utopia
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high-dimensional parameter spaces of these models to find qualitatively distinguishable dynamic
regimes. This produces high-dimensional output data and therefore requires an intuitive and
convenient way of loading, analyzing, and visualizing such data.

Consequently, the software for implementing and analyzing computational models becomes
the main source of scientific insight. It is therefore required to be not only performant
but also reliable. At the same time, complicated models necessarily demand sophisticated
software and large amounts of code that needs to be produced collaboratively by multiple
researchers if a critical project size is exceeded. To verify and maintain its functionality, the
software must be comprehensibly tested. Insights gained from the implemented models need
to be easily communicated among peers. In recent years, software engineering workflows
have therefore been adopted in the field of computational science. This facilitated satisfying
the aforementioned demands in scientific software development, helped to avoid redundant
re-implementations and enabled efficient, collaborative development of research software in
large groups of researchers (Storer, 2017).

Representations of complex and evolving systems are often created using variations of three
main modeling techniques: cellular automata (CA), network models, and agent-based models
(ABM). CA are grid-based methods with update rules depending on the current states of grid
cells and their respective cell neighborhoods and are used to investigate the emergence of
macroscopic features from cell-local interactions (Chopard et al., 2002; Wolfram, 1983). In
contrast, network models focus on heterogeneous and possibly dynamic interaction structures
between entities (Albert & Barabási, 2002; Boccaletti et al., 2006). Finally, the constituents
of ABMs are heterogeneous individuals with dynamic behavior in possible interplay with their
environment. Among applications in nearly every scientific field, ABMs are also used to model
traffic and population dynamics as well as biological evolution (Macal, 2016).

We summarize the typical workflow of a computational scientist investigating complex and
evolving systems via these modeling techniques in a computer model lifecycle consisting of
four stages:

1. Conceptualization of the research question
2. Implementation of a computer model
3. Generation of simulation data
4. Analysis of the data and extraction of results

These are intrinsically linked and insights from one stage might necessitate a re-iteration of a
previous stage. A comprehensive modeling framework should support researchers and facilitate
software engineering workflows through all of these stages.

State of the Art
Several open-source frameworks for modeling complex and evolving systems in different
programming languages are readily available (Cardinot et al., 2019; Masad & Kazil, 2015;
Vahdati, 2019). NetLogo is an especially popular scientific software environment with a similar
premise as Utopia (Wilensky, 1999). As a framework for agent-based models, it provides a
graphical user interface for an immediate and easily accessible investigation of simulations and
its own programming language to support the development of models by scientists with little
programming experience. It also ships with a model library including numerous models from
several fields of research.

In our perception, however, none of these frameworks were able to support all stages of the
aforementioned model lifecycle without compromising either flexibility or performance. Several
frameworks also would not support the software engineering procedures we deemed crucial
for collaboratively developing models in our research group. With Utopia, we focus on the
generation and evaluation of multi-dimensional data in parameter space scans and granting
programmers the entire feature range of the C++ and Python programming languages by
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providing slim and open interfaces and an extensive function library. With this orientation, we
hope that Utopia serves as a valuable addition to the existing range of modeling frameworks
that aim to investigate complex and evolving systems.

Feature Overview
We devised Utopia as a single framework supporting the four stages of a computer model’s
lifecycle. Utopia models consist of the C++ model implementation, customized analysis and
plotting functions, model tests, and configuration files defining default parameters.

Conceptualizing a model (stage 1) requires both a set of common building blocks and routines,
and adequate freedom to explore and investigate new scenarios. Utopia supplies a library for
building models that defines a common language for all its users through its nomenclature and
functional interplay. This facilitates creating computational representations of abstract concepts.
While models may be integrated into the framework itself, its entire functionality is available
when using Utopia as a regular dependency for independent model development. Moreover,
Utopia can be used with any computer model that either conforms to its configuration data
input and simulation data output schemes directly or for that appropriate interfaces are added.

For implementing a specific model (stage 2), Utopia provides a Model base class and a template
library for common operations and effortless framework integration. We call this the Utopia
backend which is written in modern C++ and employs the C++17 standard revision. The
base class provides the scaffolding for implementing dynamics and integrates into the Utopia
modeling workflow by providing the interfaces for configuration input and data output as well
as for coupling several models into one. Recurring tasks like building grids and networks,
managing CA and ABMs, and applying state update rules on entities of any model type
can be handled conveniently using the Utopia core library. This library uses Armadillo as
high-level linear algebra backend (Sanderson & Curtin, 2018, 2016). Furthermore, the dataIO

library provides versatile capabilities for storing hierarchically nested simulation data in HDF5
files (The HDF Group, 1997). It wraps around the HDF5 C library and supports numerous
complicated data output tasks that can be defined and controlled via configuration files.

The Utopia frontend manages the configuration and execution of simulations (stage 3). It is
implemented as the utopya Python package which parses user input to generate a configuration,
invokes the model executables in parallel, and reports on the progress throughout a simulation
run. Simulations can be controlled both from an interactive Python session or via a command
line interface. An important user experience concept of the frontend is to provide reasonable
default parameters on all levels while allowing to specify custom values where desired. This is
achieved by using a hierarchical, dictionary-like configuration structure and multiple sets of
default configuration values, that can be updated by the user. With this structure, parameters
can be supplied both via the Python interface or YAML configuration files. Utopia utilizes the
paramspace Python package for conveniently defining parameter sweeps in this hierarchical
structure (Sevinchan, 2019).

For handling multi-dimensional, hierarchical data (stage 4), the frontend interfaces with the
dantro Python package to load, process, and visualize the HDF5 data generated by model
simulations (Sevinchan, Herdeanu, & Traub, 2020). Like the simulation runs, data processing
and the creation of plots and animations are specified using a set of configuration parameters
which can be supplied in Python code or via YAML configuration files. Utopia provides an
extensive and extensible set of universal and model-specific plot functions for simulation data
plots of a single time step, timelines of model characteristics, as well as visualizations of
parameter space scans.

Utopia aims to increase model reliability by providing easy means of implementing tests
alongside a model. These tests can be C++ unit tests utilizing the Boost Test library or
Python-based tests on the simulation output that assert the expected macroscopic behavior.
All tests are carried out as part of an automated test suite in the GitLab CI/CD, and thus
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provide rapid feedback to model developers. This helps to address the practical aspects of
testing scientific software (Kanewala & Bieman, 2014).

Application in Research and Teaching
More than 20 Bachelor, Master, and Ph.D. students in our research group have employed
Utopia as the sole software framework for their modeling-based research projects so far.
Current PhD projects use Utopia to investigate the feedback between environment and evolving
populations with CA and ABMs, the evolution of ecological interaction networks, the emergence
of cooperation in dynamic social interaction networks, and the development of geometric and
polarity properties of the basilar papilla in agent-based vertex models.

Utopia has also been used for teaching complex and evolving environmental systems in the
M.Sc. Physics curriculum at the Department of Physics and Astronomy, Heidelberg University.
In seminars, students were able to implement their own models over the course of one semester,
even if they started with very limited programming experience. Additionally, student exercises
that involved investigating models discussed in lectures have been conducted with Utopia.

Showcase
In this section, we demonstrate the capabilities and the typical workflow of Utopia with the
ForestFire model that simulates forest fires with a lightning probability and an immediate
burn-down of connected tree clusters (Drossel & Schwabl, 1992). It implements a cellular
automaton with two states, empty and tree, and a simple set of update rules for each simulated
iteration:

• If a cell is empty, it is set to tree with a growth probability.
• If a cell is tree, it may spontaneously ignite with a lightning probability and is then set

to empty.
• If a cell is ignited, all cells in its neighborhood with state tree are unconditionally ignited.

This rule is then recursively applied to all other ignited cells.

The following configuration file is used to perform a parameter scan of the model. It globally
defines the number of iteration steps and the spatial resolution of the model. The sweep
is performed over three different lightning probabilities and ten different random number
generator seeds. Additionally, we set ten different tree densities as initial condition. The sweep
over these values is coupled to the sweep over the random number generator seeds. In total,
30 simulations are executed.

# run-cfg.yml

---

# Tell Utopia to perform a parameter sweep

perform_sweep: true

# Configure the parameter space

parameter_space:

# Total iteration steps

num_steps: 1000

# Sweep over random number generator seeds

seed: !sweep

default: 42

range: [10]

# ForestFire model configuration
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ForestFire:

# Set the grid resolution

cell_manager:

grid:

resolution: 512

# Set initial tree density

cell_params:

# Sweep over 10 different values

# Couple this sweep to the sweep over 'seed'

p_tree: !coupled-sweep

target_name: seed

default: 0.3

linspace: [0.3, 0.4, 10]

# Sweep over lightning probability

p_lightning: !sweep

default: 1.0e-4

values:

- 1.0e-3

- 1.0e-4

- 1.0e-5

The simulations are conveniently executed via the Utopia command line interface,

utopia run ForestFire run-cfg.yml

This performs the parameter sweep, stores the simulation data, and immediately runs the
default analysis and plotting scripts. Custom plotting configurations can be supplied via the
--plots-cfg option, and already generated simulation data can be re-evaluated with the
command

utopia eval ForestFire

Among the standard plots for this model are snapshots of the cellular automaton state or
visualizations of connected tree clusters, as displayed in Figure 1. These single plots can also
be joined to movie clips by changing one configuration line. Additionally, Figure 2 depicts the
output of an analysis and plotting script for a parameter scan of the model and displays a
time-series of the mean tree densities for the different lightning probabilities.
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Figure 1: Snapshot of a single ForestFire simulation after 1000 iterations. A: The current state of the
cellular automaton. Cells with state tree are colored green, cells with state empty are colored ocher. B:
Visualization of connected tree clusters, where neighboring cells with state tree are shown in the same
color and empty cells are white.

Figure 2: Parameter space time-series of the ForestFire simulation. The line plots depict the mean
tree density calculated over all simulations with the same lightning probability. The shaded areas denote
the respective standard deviation.
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Related Work
A conference contribution on how our research group profited from developing Utopia as
a collaborative framework for computational models of complex and evolving systems was
published in the proceedings of the International Conference on Computational Science (ICCS)
2020 (Sevinchan, Herdeanu, Mack, et al., 2020). An article presenting the design and features
of Utopia in full detail is in preparation (Herdeanu et al., 2020).
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