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Summary

Central to the field of neuroimaging is the development of techniques for making sense of
complex brain data. However, rapid technological advancements are pushing the spatial and
temporal resolution of imaging in different modalities to an unprecedented level, leading to
large datasets which cannot be analyzed in the traditional desktop computing paradigm. This
has led to a paradigm shift in scientific research with an increasing emphasis on collaborative
data sharing. However, current approaches to data sharing, such as negotiating multiple
data sharing agreements, can be cumbersome. In addition, there are also significant data
transfer, organizational, and computational challenges, the result being that collaborative
group research requires a great deal of coordination. Human and business factors can hamper
research from happening at a constructive pace, maybe even forbidding group research to
occur at all.

Statement of Need

The Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation
(COINSTAC (Plis et al., 2016)) is a web-based framework that addresses the aforementioned is-
sues. It provides a platform to analyze data stored locally across multiple organizations without
the need for pooling the data at any point during the analysis, enabling decentralization.

Software

COINSTAC is intended to be the ultimate hub by which researchers can build statistical (Ming
et al., 2017) or machine learning models (Gazula et al., 2018) collaboratively in a decentralized
fashion. This framework implements a message-passing infrastructure that allows large-scale
analysis of decentralized data with results on par with those that would have been obtained if
the data were centralized. Because there is no pooling of data, COINSTAC protects the pri-
vacy of individual datasets. In addition, COINSTAC also offers differentially private algorithms
for enhanced protection from reidentification attacks. Differential privacy is a framework to
control the risk that individual data points can be inferred from the output of the algorithm
(Dwork, Roth, & others, 2014). Computations can be local or decentralized and are deployed
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using a containerized model. COINSTAC simulator, a simulation environment for algorithm
developers to build COINSTAC computations, is also available. After developers ensure com-
patibility of their computations with COINSTAC through the simulator, these computations
can then be made available within the COINSTAC platform.

Figure 1: A graphical representation of decentralization in COINSTAC

Related Work

In the past, data-specific collaborative efforts have included either aggregating the data via a
centralized data sharing repository or sharing data via agreement-based collaborations. Frame-
works such as ENIGMA (Thompson et al., 2014) to some extent bypass the need for data
agreements by performing a centrally coordinated analysis at each local site. Another frame-
work called ViPAR (Carter et al., 2016) tries to go one step further by completely isolating the
data at the local site but only pooling it via transfer to perform automated statistical analyses.
However, the heterogeneity among the local analyses caused by adopting various data col-
lection mechanisms or preprocessing methods can lead to inaccurate meta-analysis findings.
Other tools such as CBRAIN (Sherif et al., 2014), Loris (Das, Zijdenbos, Vins, Harlap, &
Evans, 2012), XNAT (Herrick et al., 2016), and OpenNeuro (Gorgolewski, Esteban, Schaefer,
Wandell, & Poldrack, 2017) exist, but a more detailed comparison is not provided herein, as
COINSTAC is, to our knowledge, the first application platform enabling decentralized analysis
of brain imaging data.

Features

COINSTAC removes the barriers to collaborative analysis by:
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1. Decentralizing analyses and computation.

• Analysis pipelines only interact with site data on their own computers. Aggregate derived
data, such as model weights, from each user may be sent to a central compute node,
but never raw data. Over a dozen local and decentralized computations/algorithms
have been developed already, with more coming.

• A central compute node performs a complimentary component of the group analysis by
coordinating between the various data nodes participating in a consortium. This node
may trigger adjusted computations on user machines to improve a model.

2. Not synchronizing full datasets. Instead, synchronizing only aggregate-level analysis
metrics (e.g., the gradients of a machine learning algorithm)

• As previously discussed, central compute nodes aggregate these metrics and help the
user draw conclusions from the contributors.

• Because machine learning algorithms can be designed to model outcomes via artifacts
of analysis pipelines, COINSTAC keeps data safely and conveniently on site computers.

3. Applying differential privacy strategies to further enhance anonymization of private data
while still permitting collaboration.

• To protect against malicious embedded attacks inside computations, all computations
made available in COINSTAC are manually vetted.

Example Usage

In a recent study (Gazula et al., 2019), the Global Imaging Genetics of Adolescents consortium
performed a decentralized voxel-based morphometry analysis of structural magnetic resonance
imaging data across two sites to examine the structural changes in the brain related to age,
body mass index, and smoking. The code used for the analysis (Gazula, 2020a) and sample
data (Gazula, 2020b) are publicly available on GitHub.

Community Guidelines

We encourage collaboration from the community, including creating a computation to run in
COINSTAC, conducting a study using COINSTAC, or contributing to our open-source code
base.
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