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Summary

OpenOA is an open source framework for operational data analysis of wind energy plants,
implemented in the Python programming language (Van Rossum & Drake, 2009). OpenOA
provides a common data model, high level analysis workflows, and low-level convenience
functions that engineers, analysts, and researchers in the wind energy industry can use to
facilitate analytics workflows on operational data sets. OpenOA contains documentation,
worked out examples in Jupyter notebooks, and a corresponding example dataset from the
Engie Renewable’s La Haute Borne Dataset.
Originally released to the public in 2018 (Perr-Sauer et al., 2018), OpenOA is now actively
developed through a public Github repository. With over 50 stars on Github, a dozen con-
tributors, and an active issues forum, OpenOA is becoming a mature project that provides a
high level interface to solve practical problems in the wind energy industry. OpenOA V2 is
released as a Python package and is freely available under a business-friendly, open-source,
BSD license. By committing to open source development, OpenOA hopes to facilitate repro-
ducibility of research in this field, provide benchmark implementations of commonly performed
data transformation and analysis tasks, and to serve as a conduit that delivers state-of-the-art
analysis methods from researchers to practitioners.
Most users will interface with OpenOA through its analysis methods module. This includes
Python classes which conform to a common interface (e.g., they implement __init__, prep
are, and run methods). Version 2 of OpenOA implements three high level analysis methods
for the calculation of: (1) Long term corrected annual energy production (AEP), (2) electrical
losses, and (3) turbine level losses. Uncertainty quantification is achieved in each analysis
using a Monte Carlo approach. A more detailed description of these analyses are provided in
the documentation. Low level functions that operate on Pandas series objects are organized
in the toolkit module. These Python functions are written to be as generic as possible, and
can be applied across multiple domains.
The OpenOA data model is implemented in the types module using a class called PlantData,
which contains at least one Pandas data frame (McKinney & others, 2010). These classes
add convenience functions and a domain-specific schema based on the IEC 6400-25 standard
(Wind Turbines – Part 25-2, 2015). OpenOA is part of the ENTR alliance consortium, which
envisions a complete software stack centered around an open source implementation of this
standard.
OpenOA depends on scikit-learn (Pedregosa et al., 2011) and numpy (Oliphant, 2006), with
graphing functions implemented using matplotlib (Hunter, 2007). The OpenOA development
team strives to use modern software development practices. Documentation is compiled
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from the source code and automatically published to ReadTheDocs. We use Github actions
to implement our continuous integration pipeline, including automated unit and regression
tests, test coverage reporting via CodeCov, automated packaging and publication to the PyPI
package index. We utilize a modified git-flow development workflow, with pull requests and
issue tracking on Github driving the development.

Statement of Need

OpenOA was created and is primarily developed by researchers at the National Renewable
Energy Laboratory (NREL) through the Performance, Risk, Uncertainty, and Finance (PRUF)
project. The PRUF team recognized the need to compute a long term corrected AEP (compa-
rable to a 20-year estimate) from operational data as part of an industry-wide benchmarking
study (Lunacek et al., 2018). Due to access restrictions on the input data, open source pub-
lication of the code was necessary to foster trust in the results of the benchmarking study.
Furthermore, after talking with our industry partners, it became clear that there was no in-
dustry standard method for computing a long term corrected AEP. Currently, participants in
the wind energy industry who wish to compute metrics like AEP must rely on commercial sec-
ondary supervisory control and data acquisition (SCADA) software providers, or must develop
their own methodologies internally. We know of no other open source software package to
compute long term corrected AEP.

Figure 1: A subset of graphical outputs from the OpenOA documentation. Clockwise from
the top, (A) power curve with extreme values highlighted in red, (B) distribution of long
term corrected AEP, (C) time-series of wind speed from multiple reanalysis products showing
anomalously low wind speed for a highlighted period of record.
Operational analysis involves obtaining time-series data from an industrial plant’s SCADA sys-
tem, performing quality control processes on these data, and computing metrics that provide
insight into the performance charactertistics of a wind plant. Figure 1 contains some graphical
outputs that are generated by OpenOA. Since its inception, OpenOA has been used in several
published studies at NREL. An early version of the code was used in Craig et al. (2018) to
quantify the uncertainty in AEP estimates resulting from analyst choices. In Bodini & Optis
(2020), it is used to calculate long-term operational AEP from over 470 wind plants in the
US to assess correlation between uncertainty components. OpenOA will also be used in an
upcoming technical report for the PRUF project’s industry-wide benchmarking study.
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