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Summary

Urban tree canopy datasets are important to a wide variety of social and environmental studies
in cities. Surveys to collect such information manually are costly and hard to maintain, which
has motivated a growing interest in automated approaches to tree detection in recent years.
To that end, LIDAR point clouds are a very appropriate data source, especially given its
capability to represent spatial features in three dimensions. However, collecting LIDAR data
requires expensive equipment and raw datasets are rarely made openly available. On the other
hand, aerial imagery is another major source of data that is able to capture a wide range of
objects on Earth, including trees. Although aerial imagery depicts the spatial features in only
two dimensions, its main advantage with respect to LIDAR is its greater availability.
The aim of DetecTree is therefore to provide an open source library that performs a binary
classification of tree/non-tree pixels from aerial imagery. The target audience is researchers
and practitioners in GIS that are interested in two-dimensional aspects of trees, such as
their proportional abundance and spatial distribution throughout a region of study. These
measurements can be used to assess important aspects of urban planning such as the provision
of urban ecosystem services. The approach is of special relevance when LIDAR data is not
available or it is too costly in monetary or computational terms.

Methodology

DetecTree is based on the supervised learning approach of Yang, Wu, Praun, & Ma (2009),
which requires an RGB aerial imagery dataset as the only input, and consists of the following
steps:

• Step 0: split of the dataset into image tiles. Since aerial imagery datasets often already
come as a mosaic of image tiles, this step might not be necessary. In any case, DetecTree
provides a split_into_tiles function that can be used to divide a large image into
a mosaic of tiles of a specified dimension.

• Step 1: selection of the tiles to be used for training a classifier. As a supervised learning
task, the ground-truth maps must be provided for some subset of the dataset. Since
this part is likely to involve manual work, it is crucial that the training set has as few
tiles as possible. At the same time, to enhance the classifier’s ability to detect trees in
the diverse scenes of the dataset, the training set should contain as many of the diverse
geographic features as possible. Thus, in order to optimize the representativity of the
training set, the training tiles are selected according to their GIST descriptor (Oliva &
Torralba, 2001), i.e., a vector describing the key semantics of the tile’s scene. More
precisely, k-means clustering is applied to the GIST descriptors of all the tiles, with
the number of clusters k set to the number of tiles of the training set (by default, one
percent of the tiles is used). Then, for each cluster, the tile whose GIST descriptor is
closest to the cluster’s centroid is added to the training set. In DetecTree, this is done
by the train_test_split method of the TrainingSelector class.
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• Step 2: provision of the ground truth tree/non-tree masks for the training tiles. For
each tile of the training set, the ground-truth tree/non-tree masks must be provided to
get the pixel-level responses that will be used to train the classifier. To that end, an
image editing software such as GIMP or Adobe Photoshop might be used. Alternatively,
if LIDAR data for the training tiles is available, it might also be exploited to create the
ground truth masks.

• Step 3: train a binary pixel-level classifier. For each pixel of the training tiles, a vector
of 27 features is computed, where 6, 18 and 3 features capture characteristics of color,
texture and entropy respectively. A binary AdaBoost classifier (Freund & Schapire,
1995) is then trained by mapping the feature vector of each pixel to its class in the
ground truth masks (i.e., tree or non-tree).

• Step 4: tree detection in the testing tiles. Given a trained classifier, the classify_img
and classify_imgs methods of the Classifier class can respectively be used to
classify the tree pixels of a single image tile or of multiple image tiles at scale. For each
image tile, the pixel-level classification is refined by means of a graph cuts algorithm
(Boykov & Kolmogorov, 2004) to avoid sparse pixels classified as trees by enforcing
consistency between adjacent tree pixels. An example of an image tile, its pre-refinement
pixel-level classification and the final refined result is displayed below:

Figure 1: Example of an image tile (left), its pre-refinement pixel-level classification (center) and the
final refined result (right).

Similar methods of tree classification from aerial imagery include the work of Jain, Mittal,
Jain, & Sinha (2019), who follow the train/test split method based on GIST descriptors as
proposed by Yang et al. (2009) but rely on the Mask R-CNN framework (He, Gkioxari,
Dollár, & Girshick, 2017) instead of the AdaBoost classifier. Another approach by Tianyang,
Jian, Sibin, Ying, & Jing (2018) employs a cascade neural network over texture and color
features which detects single trees in a variety of forest images. Nonetheless, since the former
approaches ultimately aim at single tree detection, the accuracy evaluation metrics that they
provide are hard to compare with the pixel-level classification accuracy of DetecTree. The
experiments performed by Yang et al. (2009) in New York achieve a pixel classification
accuracy of 91.7%, whereas the example applications of DetecTree in Zurich and Lausanne
achieve accuracies of 85.98% and 91.75% respectively.
The code of DetecTree is organized following an object-oriented approach, and relies on
NumPy (Van Der Walt, Colbert, & Varoquaux, 2011) to represent most data structures and
perform operations upon them in a vectorized manner. The Scikit-learn library (Pedregosa et
al., 2011) is used to implement the AdaBoost pixel-level classifier as well as to perform the k-
means clustering to select the training tiles. The computation of pixel-level features and GIST
descriptors makes use of various features provided by the Scikit-image (Van der Walt et al.,
2014) and SciPy (Virtanen et al., 2020) libraries. On the other hand, the classification refine-
ment employs the graph cuts algorithm implementation provided by the library PyMaxFlow.
Finally, when possible, DetecTree uses the Dask library (Rocklin, 2015) to perform various
computations in parallel.
The features of DetecTree are implemented in a manner that enhances the flexibility of the
library so that the user can integrate it into complex computational workflows, and also provide
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custom arguments for the technical aspects. Furthermore, the functionalities of DetecTree
can be used through its Python API as well as through its command-line interface (CLI),
which is implemented by means of the Click Python package.

Availability

The source code of DetecTree is fully available at a GitHub repository. A dedicated Python
package has been created and is hosted at the Python Package Index (PyPI). The documen-
tation site is hosted at Read the Docs, and an example repository with Jupyter notebooks of
an example application to an openly-available orthophoto of Zurich is provided at a dedicated
GitHub repository, which can be executed interactively online by means of the Binder web
service (Bussonnier et al., 2018). An additional example use of DetecTree can be found at
a dedicated GitHub repository with the materials to obtain a tree canopy map for the ur-
ban agglomeration of Lausanne from the SWISSIMAGE 2016 orthophoto (Federal Office of
Topography, 2019).
Unit tests are run within the Travis CI platform every time that new commits are pushed to
the GitHub repository. Additionally, test coverage is reported on Coveralls.
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