
taurenmd: A command-line interface for analysis of
Molecular Dynamics simulations.
João M.C. Teixeira1, 2

1 Previous, Biomolecular NMR Laboratory, Organic Chemistry Section, Inorganic and Organic
Chemistry Department, University of Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain 2
Current, Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4,
Canada

DOI: 10.21105/joss.02175

Software
• Review
• Repository
• Archive

Editor: Richard Gowers
Reviewers:

• @amritagos
• @luthaf

Submitted: 03 March 2020
Published: 02 June 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
Molecular dynamics (MD) simulations of biological molecules have evolved drastically since
its application was first demonstrated four decades ago (McCammon, Gelin, & Karplus, 1977)
and, nowadays, simulation of systems comprising millions of atoms is possible due to the latest
advances in computation and data storage capacity – and the scientific community’s interest
is growing (Hospital, Battistini, Soliva, Gelpí, & Orozco, 2019). Academic groups develop
most of the MD methods and software for MD data handling and analysis. The MD analysis
libraries developed solely for the latter scope nicely address the needs of manipulating raw data
and calculating structural parameters, such as: MDAnalysis (Gowers et al., 2016; Michaud-
Agrawal, Denning, Woolf, & Beckstein, 2011); MDTraj (McGibbon et al., 2015); LOOS (Romo,
Leioatts, & Grossfield, 2014); and PyTraj (Hai Nguyen, 2016; Roe & Cheatham, 2013), each
with its advantages and drawbacks inherent to their implementation strategies. This diversity
enriches the field with a panoply of strategies that the community can utilize.
The MD analysis software libraries widely distributed and adopted by the community share
two main characteristics: 1) they are written in pure Python (Rossum, 1995), or provide a
Python interface; and 2) they are libraries: highly versatile and powerful pieces of software that,
however, require advanced scripting and understanding to be operated, even for their basic
functionalities. While this is the correct approach to develop flexible computational libraries,
it creates a barrier between these software packages and non-developer researchers and hinder
high throughput practices, particularly for routine data handling. Therefore, the need has
emerged to create a platform that can efficiently combine the MD libraries available in the
Python universe, taking the most out of each, and implements rapid interfaces for routine
usage by both experts and non-experts in the field. In response to that, here is presented
taurenmd (Figure 1), an easy-to-use and extensible ecosystem of command-line interfaces
that facilitates complex operations in Molecular Dynamics data analysis by building on top of
powerful Python-based MD analysis libraries.
The MD community has software packages that provide graphical interfaces to manipulate
trajectories iteratively, such as VMD (Humphrey, Dalke, & Schulten, 1996), and the new inte-
gration between MDAnalysis and PyMol (Paul Smith, 2019). Also, there are powerful libraries
to prepare molecular systems and run MD simulations, such as GROMACS (Abraham et al.,
2015) and PLUMED (Bonomi et al., 2009). To date, taurenmd does not operate in either of
these realms. If similar functionalities are developed in future versions, taurenmd will make
use of the library interfaces provided by the projects referred before and will do so by creating
command-line accessible pre-configured work-flows. Projects like GROMACS (Abraham et al.,
2015) and LOOS (Romo et al., 2014) implement command-line ready interfaces to operate
upon trajectories, differently to those libraries, taurenmd does not implement core functional-
ities and, instead, it leverages the features provided by the referred third-party libraries. Also,
taurenmd is a Python written software and, therefore, focuses on the usage of MD libraries
that are also written in Python or provide a Python interface.

Teixeira, J.M.C., (2020). taurenmd: A command-line interface for analysis of Molecular Dynamics simulations.. Journal of Open Source
Software, 5(50), 2175. https://doi.org/10.21105/joss.02175

1

https://doi.org/10.21105/joss.02175
https://github.com/openjournals/joss-reviews/issues/2175
https://github.com/joaomcteixeira/taurenmd
https://doi.org/10.5281/zenodo.3843326
https://github.com/amritagos
https://github.com/luthaf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02175

Figure 1: taurenmd logo.

Implementation
taurenmd provides highly parametrizable command-line interfaces that automate complex
operations of Molecular Dynamics (MD) data handling and analysis in unitary executions that
represent conceptual ideas, such as the manipulation of raw MD data or the calculation of
structural parameters (RMSDs, RMSFs, etc.). Command-line operations are workflows defined
by orchestrated single-operation functions. These single-logic functions are coded in the core
of taurenmd’s library which facilitates unit-testing and sharing among all interfaces. Therefore,
the design of taurenmd’s architecture is highly modular; yet, it is simple, flat, easy to read, and
extensible. taurenmd serves as a continuous growing hub of routines, where new operations
can be implemented and shared among the community in a defined and documented manner.
The taurenmd project is hosted at GitHub (https://github.com/joaomcteixeira/taurenmd)
and is extensively documented at ReadTheDocs (https://taurenmd.readthedocs.io).
To operate on MD data, taurenmd uses third-party MD analysis libraries; currently, it imports
MDAnalysis (Gowers et al., 2016; Michaud-Agrawal et al., 2011), MDTraj (McGibbon et al.,
2015), and OpenMM (Eastman et al., 2017), and they are used depending on the requirements
of each command-line client. But, the design of the program allows facile incorporation of new
dependencies to extend or implement new workflows. Finally, though taurenmd focuses on
enhanced combination of third party libraries, its design leaves room for the implementation
of original analysis routines when needed.
The command-line interface of taurenmd is hierarchic, where taurenmd is the main entry
point and the different interfaces exist as subroutines, for example:
help instructions for the main taurenmd entry point
$ taurenmd -h
an execution example
$ taurenmd [SUBROUTINE] [OPTIONS]
querying help for a specific subroutine
$ taurenmd report -h

At the date of publication, taurenmd provides ten different command-line interfaces; all of
which, with their arguments and functionalities, are thoroughly described in the project’s doc-
umentation under the “Command-line interfaces” section. Similarly, all individual functional
operations provided are open, fully documented, and can be imported and used by other
projects if desired.
To invite community contributions, a client template file is provided with detailed instructions
to guide the implementation of new command-line workflows. The building blocks required
to build command-line clients are also extensively documented in the libs/libcli.py mod-
ule, they are reusable and new blocks can also be added if needed. New logical operations
can be implemented in the library core and used in clients. Complete instructions on how to

Teixeira, J.M.C., (2020). taurenmd: A command-line interface for analysis of Molecular Dynamics simulations.. Journal of Open Source
Software, 5(50), 2175. https://doi.org/10.21105/joss.02175

2

https://github.com/joaomcteixeira/taurenmd
https://taurenmd.readthedocs.io
https://doi.org/10.21105/joss.02175

contribute to the project are provided in the documentation. The project provides extensive
Continuous Integration tests and explicit instructions for code style and format to guide devel-
opers. taurenmd follows Semantic Versioning 2.0 and we favor agile development/deployment
instead of periodic releases.

Installation
To install taurenmd follow the instructions provided in the corresponding documentation page.
taurenmd code uses only Python-provided interfaces and is, therefore, compatible with any
platform able to execute Python. However, the different Molecular Dynamics analysis libraries
imported have very different deployment strategies and the taurenmd project cannot guarantee
those will function in all operating systems; it is, however, guaranteed that taurenmd works
fully on Ubuntu 18.04 LTS running Anaconda as Python package manager. We advise reading
the detailed installation instructions provided in the project’s documentation.

Use cases
The taurenmd current version has ten command-line interfaces that execute different analysis
or data manipulation routines. Extensive usage examples are provided in the documentation
website or by the command:
$ taurenmd -h

Here we show how the trajedit interface is used for data manipulation and transformation:
$ taurenmd trajedit topology.pdb trajectory.xtc -d traj_s50_e500_p10.xtc \
> -s 50 -e 500 -p 10 -l 'segid A'

The latter extracts a subtrajectory spanning frames 50 to 500 (exclusive) with a step interval
of 10 frames, and only for atoms for the 'segid A' atom group; in this particular case, we
make use of MDAnalysis library (Gowers et al., 2016; Michaud-Agrawal et al., 2011) to handle
the data. taurenmd documentation provides additional usage examples in “Usage” page. Also,
each client (command) documentation presents explanations on, and examples of, how to use
it - see “Command-line interfaces” documentation page.

Acknowledgements
The initial concept of this project was largely inspired in the pdb-tools project “one script one
action” idea (Rodrigues, Teixeira, Trellet, & Bonvin, 2018). The author deeply thanks João
P.G.L.M. Rodrigues (ORCID: 0000-0001-9796-3193) for mentoring regarding MD simulations
and data analysis and to Susana Barrera-Vilarmau (ORCID: 0000-0003-4868-6593) for her
intensive usage of the program since the very first versions and all the discussions, feedback
and suggestions on building a user-friendly interface. The project’s repository layout and
Continuous Integration setup was based on cookiecutter-pylibrary repository (Mărieș,
2019) with final personal modifications by J.M.C.T.

References
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015).

GROMACS: High performance molecular simulations through multi-level parallelism from
laptops to supercomputers. SoftwareX, 1-2, 19–25. doi:10.1016/j.softx.2015.06.001

Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D.,
et al. (2009). PLUMED: A portable plugin for free-energy calculations with molecular

Teixeira, J.M.C., (2020). taurenmd: A command-line interface for analysis of Molecular Dynamics simulations.. Journal of Open Source
Software, 5(50), 2175. https://doi.org/10.21105/joss.02175

3

https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.21105/joss.02175

dynamics. Computer Physics Communications, 180(10), 1961–1972. doi:10.1016/j.cpc.
2009.05.011

Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang,
L. P., et al. (2017). OpenMM 7: Rapid development of high performance algorithms for
molecular dynamics. PLoS Computational Biology, 13(7), 1–17. doi:10.1371/journal.pcbi.
1005659

Gowers, Linke, Barnoud, Reddy, Melo, Seyler, Domański, et al. (2016). MDAnalysis: A
Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In Sebastian
Benthall & Scott Rostrup (Eds.), Proceedings of the 15th Python in Science Conference
(pp. 98–105). doi:10.25080/Majora-629e541a-00e

Hai Nguyen, J. S., Daniel R. Roe. (2016). pytraj. Retrieved from https://github.com/
Amber-MD/pytraj

Hospital, A., Battistini, F., Soliva, R., Gelpí, J. L., & Orozco, M. (2019). Surviving the deluge
of biosimulation data. Wiley Interdisciplinary Reviews: Computational Molecular Science,
(July 2019), 1–20. doi:10.1002/wcms.1449

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD – Visual Molecular Dynamics. Journal
of Molecular Graphics, 14, 33–38. doi:10.1016/0263-7855(96)00018-5

Mărieș, I. C. (2019). cookiecutter-pylibrary. Retrieved from https://github.com/ionelmc/
cookiecutter-pylibrary

McCammon, J. A., Gelin, B. R., & Karplus, M. (1977). Dynamics of folded proteins. Nature,
267(5612), 585–590. doi:10.1038/267585a0

McGibbon, R. T., Beauchamp, K. A., Harrigan, M. P., Klein, C., Swails, J. M., Hernández,
C. X., Schwantes, C. R., et al. (2015). MDTraj: A Modern Open Library for the Analysis
of Molecular Dynamics Trajectories. Biophysical journal, 109(8), 1528–32. doi:10.1016/j.
bpj.2015.08.015

Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis:
a toolkit for the analysis of molecular dynamics simulations. Journal of computational
chemistry, 32(10), 2319–27. doi:10.1002/jcc.21787

Paul Smith, M. B. (2019). MD Trajectories in PyMOL: No Memory Limits. Retrieved from
https://nms.kcl.ac.uk/lorenz.lab/wp/?p=1768

Rodrigues, J. P. G. L. M., Teixeira, J. M. C., Trellet, M., & Bonvin, A. M. J. J. (2018).
Pdb-tools: A swiss army knife for molecular structures. F1000Research, 7, 1961. doi:10.
12688/f1000research.17456.1

Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing
and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and
Computation, 9(7), 3084–3095. doi:10.1021/ct400341p

Romo, T. D., Leioatts, N., & Grossfield, A. (2014). Lightweight object oriented structure
analysis: tools for building tools to analyze molecular dynamics simulations. Journal of
computational chemistry, 35(32), 2305–2318. doi:10.1002/jcc.23753

Rossum, G. van. (1995). Python tutorial (No. CS-R9526). Amsterdam: Centrum voor
Wiskunde en Informatica (CWI).

Teixeira, J.M.C., (2020). taurenmd: A command-line interface for analysis of Molecular Dynamics simulations.. Journal of Open Source
Software, 5(50), 2175. https://doi.org/10.21105/joss.02175

4

https://doi.org/10.1016/j.cpc.2009.05.011
https://doi.org/10.1016/j.cpc.2009.05.011
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/%2010.25080/Majora-629e541a-00e%20
https://github.com/Amber-MD/pytraj
https://github.com/Amber-MD/pytraj
https://doi.org/10.1002/wcms.1449
https://doi.org/10.1016/0263-7855(96)00018-5
https://github.com/ionelmc/cookiecutter-pylibrary
https://github.com/ionelmc/cookiecutter-pylibrary
https://doi.org/10.1038/267585a0
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1002/jcc.21787
https://nms.kcl.ac.uk/lorenz.lab/wp/?p=1768
https://doi.org/10.12688/f1000research.17456.1
https://doi.org/10.12688/f1000research.17456.1
https://doi.org/10.1021/ct400341p
https://doi.org/10.1002/jcc.23753
https://doi.org/10.21105/joss.02175

	Summary
	Implementation
	Installation
	Use cases
	Acknowledgements
	References

