
TESPy: Thermal Engineering Systems in Python
Francesco Witte1, 2 and Ilja Tuschy1, 2

1 Center for Sustainable Energy Systems, Flensburg 2 Flensburg University of Applied Sciences
DOI: 10.21105/joss.02178

Software
• Review
• Repository
• Archive

Editor: Kyle Niemeyer
Reviewers:

• @arosen93
• @corentin-dev

Submitted: 18 February 2020
Published: 21 May 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

TESPy (Thermal Engineering Systems in Python) provides a powerful simulation toolkit for
thermal process engineering, for instance power plants, district heating systems or heat pumps.
With the TESPy package it is possible to design plants and simulate stationary operation.
From that point, part-load behavior can be predicted using underlying characteristics for
each of the plant’s components. The component based structure combined with the solution
method offer very high flexibility regarding the plant’s topology and its parametrisation. An
extensive online documentation is provided at Witte (2020). Several examples and tutorials
on how to use the software are included, too.

Motivation

Thermal process simulation is a fundamental discipline in energy engineering. Consequently,
there are several well known commercial software solutions available in this field, for example
EBSILON Professional or Aspen Plus, mainly used in the industrial environment. A similar ap-
proach was carried out by Casella & Leva (2003) with the open source library “ThermoPower”
written in the Modelica language. The software provides dynamic modeling and focuses on
steam power plants, but has not been updated since 2014 (Politecnico di Milano, 2014).
Here we propose a new solution for simulating thermal processes, since ThermoPower is not
currently maintained and also limited to one field of thermal engineering. In order to open the
software to a wide (scientific) audience an open source solution in the widespread programming
language Python is implemented.

Package Architecture

TESPy is built up in modular structure with three main modules:

• networks: The networks module represents the container for every simulation. Initiali-
sation, preprocessing, solving and postprocessing are handled by the network class.

• components: All components are part of the components module. The package pro-
vides basic components, for example different types of turbomachinery, heat exchangers,
pipes, valves and mixers or splitters. On top of that, advanced components like a drum,
an internal combustion engine or a combustion chamber are available. The individual
properties of each component are defined in the respective class.

• connections: Connections are used to connect components and hold the fluid property
information. Thus, they represent the plant’s topology and its state.

Witte et al., (2020). TESPy: Thermal Engineering Systems in Python. Journal of Open Source Software, 5(49), 2178. https://doi.org/10.
21105/joss.02178

1

https://doi.org/10.21105/joss.02178
https://github.com/openjournals/joss-reviews/issues/2178
https://github.com/oemof/tespy
https://doi.org/10.5281/zenodo.3837555
http://kyleniemeyer.com
https://github.com/arosen93
https://github.com/corentin-dev
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02178
https://doi.org/10.21105/joss.02178


Method

To simulate a specific plant an individual model is created connecting the components to form
a topological network. Steady state operation of the plant is determined by the fluid’s state on
every connection (and therefore its change within components) between the plant’s individual
components. Thus, based on the components and parameters applied, TESPy generates a set
of nonlinear equations representing the plant’s topology and its parametrisation. By formu-
lating the equations implicitly parameters and results are generally interchangeable offering
high flexibility in the user specifications. The system of equations is numerically solved with
an inbuilt solver applying the multi-dimensional Newton-Raphson method to determine the
mass flow ṁ, pressure p, enthalpy h and fluid composition (defined by mass fraction x of
each fluid) of every connection. This way, it is possible to solve for both thermal as well as
hydraulic state of the plant.
To achieve this, TESPy implements balance equations based on standard literature, for exam-
ple Baehr & Stephan (2016) or Epple, Leithner, Linzer, & Walter (2012), for every component
regarding

• mass flow and fluid composition as well as
• energy (covering thermal and hydraulic properties).

On top of the basic equations presented in this paper, there are many component-specific
equations that can be applied by the user. The full list of components, its parameters and the
respective equations is documented online in the API section (Witte, 2020). For calculation
of fluid properties TESPy uses CoolProp (Bell, Wronski, Quoilin, & Lemort, 2014), which
supports a wide range of pure and incompressible fluids. In case of gaseous mixtures the
software calculates the fluid properties by the laws of ideal mixtures (Baehr & Stephan, 2016;
Herning & Zipperer, 1936).
In steady state, the total mass flow into a component must be equal to the total mass flow
leaving the component (eq. 1). Additionally, the mass balance of a specific fluid fl is applied
(eq. 2). The energy balance of all components is derived from the stationary energy balance
of open systems with multiple inlets and outlets (eq. 3).
In thermal engineering applications the change in kinetic and potential energy due to dif-
ferences in flow velocity c and height z are usually neglected as these are relatively small
compared to change in enthalpy, subsequently the equation can be simplified (eq. 4).

0 =
∑
i

ṁin,i −
∑
o

ṁout,o (1)

0 =
∑
i

ṁin,i · xfl,in,i −
∑
o

ṁout,o · xfl,out,o ∀fl ∈ network fluids (2)

0 =
∑
o

ṁout,o ·

(
hout,o + g · zout,o +

c2out,o
2

)

−
∑
i

ṁin,i ·

(
hin,i + g · zin,i +

c2in,i
2

)
− P − Q̇

(3)

0 =
∑
o

ṁout,o · hout,o −
∑
i

ṁin,i · hin,i − P − Q̇ (4)

The values of heat Q̇ and power P transferred, depend on the individual component properties.
For example,

Witte et al., (2020). TESPy: Thermal Engineering Systems in Python. Journal of Open Source Software, 5(49), 2178. https://doi.org/10.
21105/joss.02178

2

https://doi.org/10.21105/joss.02178
https://doi.org/10.21105/joss.02178


• a pipe does not transfer power, thus only heat may be transferred (P = 0).
• turbomachinery is considered adiabatic, thus it only transfers power (Q̇ = 0).

If chemical reactions take place, the corresponding chemical mass balance is taken into account
instead of equation 2. On top of that, the energy balance is different, as the reaction enthalpy
has to be considered. Furthermore, it is necessary to compensate for the different zero point
definitions of enthalpy in the fluid properties of the reaction components by defining a reference
state ref. For example, equation 5 is implemented for adiabatic combustion chambers using
the fuel’s lower heating value LHV as reaction enthalpy.

0 = ṁout · (hout − hout,ref)−
∑
i

ṁin,i · (hin − hin,ref)i − ṁin ·
∑
j

LHVj · xj (5)

With respect to hydraulic state, the pressure drop pout−pin in a pipe can be calculated by the
Darcy-Weisbach equation 6 from its dimensions (length L, diameter D) and the Darcy friction
factor λ calculated from the pipe’s roughness ks, its diameter and the Reynolds number Re.
A simpler approach is to specify the pressure ratio pr.

0 = pout − pin +
ρ · c2 · λ (Re, ks, D) · L

2 ·D
(6)

0 = pr − pout
pin

(7)

After designing a specific plant, part-load performance can be determined. For this, design
specific component parameters are calculated in the design case, for example: the area in-
dependent heat transfer coefficient kA of heat exchangers. The heat transfer at a different
operation point is calculated from the kA value and the logarithmic temperature difference
∆ϑlog in equation 8.

0 = Q̇− kA ·∆ϑlog (8)

In general, the design parameters (kA in case of the heat exchanger) can be adjusted using
lookup table functions to match the model behavior to measured data. This is especially useful
if components with well known characteristics should be implemented in a different plant or
at different operating conditions. To further improve the representation of an actual plant,
the modular structure of TESPy easily allows the addition of new equations and characteristic
functions to existing components or even new components.

Previous Implementations

The core strength of TESPy lies in the generic and component based architecture allowing to
simulate technologically and topologically different thermal engineering applications.
For example, as the increasing share of renewable energy sources to mitigate climate change
will result in a significant storage demand, underground gas storage is considered a large
scale energy storage option (International Energy Agency - IEA, 2014; Pfeiffer, Beyer, &
Bauer, 2017). Due to the feedback regarding the physical parameters of the fluid exchanged
between the geological storage and the above-ground plant, an integrated simulation of the
storage and the power plant is necessary for a detailed assessment of such storage options
(Pfeiffer, Witte, Tuschy, & Bauer, 2019). Another important task in energy system transition
is renewable heating: Heat pumps using subsurface heat to provide heating on household or
even district level show analogous feedback reactions with the underground. As their electricity

Witte et al., (2020). TESPy: Thermal Engineering Systems in Python. Journal of Open Source Software, 5(49), 2178. https://doi.org/10.
21105/joss.02178

3

https://doi.org/10.21105/joss.02178
https://doi.org/10.21105/joss.02178


consumption highly depends on the heat source temperature level, simulator coupling provides
valuable assessment possibilities in this field, too. Additionally, TESPy has been coupled with
OpenGeoSys (Naumov et al., 2020) for pipeline network simulation of borehole thermal energy
storage arrays (Chen, Witte, Kolditz, & Shao, 2020).

Acknowledgments

This work is supported by University of Applied Sciences and the Center for Sustainable Energy
Systems in Flensburg. It is part of the open energy modeling framework (oemof), most known
for its software package oemof.solph (Hilpert et al., 2018). Many thanks to all contributors.
Key parts of TESPy require the following scientific software packages: CoolProp (Bell et
al., 2014), NumPy (Walt, Colbert, & Varoquaux, 2011), pandas (McKinney, 2010). Other
packages implemented are tabulate and SciPy (Virtanen et al., 2020).

References

Baehr, H. D., & Stephan, K. (2016). Thermodynamik. Springer Berlin Heidelberg. doi:10.
1007/978-3-662-49568-1

Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and pseudo-pure fluid
thermophysical property evaluation and the open-source thermophysical property library
coolprop. Industrial & Engineering Chemistry Research, 53(6), 2498–2508. doi:10.1021/
ie4033999

Casella, F., & Leva, A. (2003). Modelica open library for power plant simulation: Design and
experimental validation. Proc. 3rd Modelica Conference, 41–50.

Chen, S., Witte, F., Kolditz, O., & Shao, H. (2020). Shifted thermal extraction rates in large
borehole heat exchanger array a numerical experiment. Applied Thermal Engineering, 167,
114750. doi:10.1016/j.applthermaleng.2019.114750

Epple, B., Leithner, R., Linzer, W., & Walter, H. (Eds.). (2012). Simulation von Kraftwerken
und Feuerungen. Springer Vienna. doi:10.1007/978-3-7091-1182-6

Herning, F., & Zipperer, L. (1936). Calculation of the viscosity of technical gas mixtures from
the viscosity of the individual gases. Gas-und Wasserfach, 79, 69–73.

Hilpert, S., Kaldemeyer, C., Krien, U., Günther, S., Wingenbach, C., & Plessmann, G. (2018).
The open energy modelling framework (oemof) - a new approach to facilitate open science
in energy system modelling. Energy Strategy Reviews, 22, 16–25. doi:10.1016/j.esr.2018.
07.001

International Energy Agency - IEA. (2014). Technology roadmap - energy storage. https:
//www.iea.org/reports/technology-roadmap-energy-storage.

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In Stéfan van
der Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference
(pp. 56–61). doi:10.25080/Majora-92bf1922-00a

Naumov, D. Y., Fischer, T., Bilke, L., Rink, K., Lehmann, C., Watanabe, N., Wenqing, et al.
(2020). Ufz/ogs 6.2.2. Zenodo. doi:10.5281/zenodo.591265

Pfeiffer, W. T., Beyer, C., & Bauer, S. (2017). Hydrogen storage in a heterogeneous sandstone
formation: Dimensioning and induced hydraulic effects. Petroleum Geoscience, 23(3),
315–326. doi:10.1144/petgeo2016-050

Witte et al., (2020). TESPy: Thermal Engineering Systems in Python. Journal of Open Source Software, 5(49), 2178. https://doi.org/10.
21105/joss.02178

4

https://github.com/oemof/tespy/graphs/contributors
https://doi.org/10.1007/978-3-662-49568-1
https://doi.org/10.1007/978-3-662-49568-1
https://doi.org/10.1021/ie4033999
https://doi.org/10.1021/ie4033999
https://doi.org/10.1016/j.applthermaleng.2019.114750
https://doi.org/10.1007/978-3-7091-1182-6
https://doi.org/10.1016/j.esr.2018.07.001
https://doi.org/10.1016/j.esr.2018.07.001
https://www.iea.org/reports/technology-roadmap-energy-storage
https://www.iea.org/reports/technology-roadmap-energy-storage
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/zenodo.591265
https://doi.org/10.1144/petgeo2016-050
https://doi.org/10.21105/joss.02178
https://doi.org/10.21105/joss.02178


Pfeiffer, W.-T., Witte, F., Tuschy, I., & Bauer, S. (2019). Test cases for a coupled power-
plant and geostorage model to simulate compressed air energy storage in geological porous
media. International Conference on Applied Energy, 12.-15.08.2019, Västeras.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing
in python. Nature Methods, 17, 261–272. doi:10.1038/s41592-019-0686-2

Walt, S. van der, Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure
for efficient numerical computation. Computing in Science & Engineering, 13(2), 22–30.
doi:10.1109/mcse.2011.37

Witte, F. (2020). TESPy. https://tespy.readthedocs.io/.
Politecnico di Milano. (2014). ThermoPower. https://build.openmodelica.org/

Documentation/ThermoPower.html.

Witte et al., (2020). TESPy: Thermal Engineering Systems in Python. Journal of Open Source Software, 5(49), 2178. https://doi.org/10.
21105/joss.02178

5

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/mcse.2011.37
https://tespy.readthedocs.io/
https://build.openmodelica.org/Documentation/ThermoPower.html
https://build.openmodelica.org/Documentation/ThermoPower.html
https://doi.org/10.21105/joss.02178
https://doi.org/10.21105/joss.02178

	Summary
	Motivation
	Package Architecture
	Method
	Previous Implementations
	Acknowledgments
	References

