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Introduction

Deep neural networks (DNNs) are finding increasing application across a wide variety of
fields, including in industry and scientific research. Although DNNs are able to successfully
tackle data problems that proved intractable to other methods, for instance in computer
vision, they suffer from a lack of interpretability. Some well-known methods for visualising
and interpreting the outputs of DNNs include directly inspecting the learned features of a
model (e.g. convolutional kernels and activation maps); or producing “saliency maps” which
allow a human researcher to inspect which parts of an input (such as an image) played the
most crucial role in the model reaching a particular determination. These algorithms include
occluding parts of an image (Zeiler & Fergus, 2014), guided backpropagation (Simonyan,
Vedaldi, & Zisserman, 2013), and more complex algorithms such as SmoothGrad (Smilkov,
Thorat, Kim, Viégas, & Wattenberg, 2017) and Layer-wise relevance propagation (Binder,
Montavon, Lapuschkin, Müller, & Samek, 2016).
However, simply inspecting the most salient regions of an input image (or other input) may
not always be sufficiently interpretable. Here we present Sensie, a python package to quickly
inspect and quantify the sensitivity of a trained model to user-specified properties of the input
domain, or under the arbitrary transformation of a test set.
Several quality software packages exist to probe artificial neural network internals, such as Inn
vestigate (Alber et al., 2018), tf-explain1, and keras-vis (Kotikalapudi & contributors,
2017). These packages are geared towards traditional image-based applications, and cannot
explore relationships between the neural network performance and arbitrary properties of the
examples presented to the network. Sensie is designed to fill that gap.

Method

Sensie helps the user explore the sensitivity of a machine learning model to properties of
data (using a test set with known, correct outputs). Sensie wraps a pre-trained model, and
assists in quantifying and visualising changes in the performance of the model as a function of
either a specified property of the data (one that is explicitly passed to the model at test time,
or other metadata); or a perturbation of the data, parameterised by a value p. In addition,
Sensie offers a convenience method to display the sensitivity of a classification model to the
class itself, though this should be used with caution.
Sensie’s algorithm is summarised as follows as applied to a network trained for classification,
for two use cases:
A) Using data or metadata: a scalar property p of the test set Xtest, such that each example
xi has a corresponding value pi and a supplied ground truth ŷ:

1https://github.com/sicara/tf-explain
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1. Segment the data into bins by p.
2. Collect predictions from the model (using model.predict() or a user-supplied func-

tion), and note the scores for the correct classes ŷ.
3. Calculate the mean score s̄ in the correct class for each bin, and the standard deviation.
4. Plot s̄ as a function of p.
5. Estimate the significance of the effect using Bayesian linear regression, producing a

scalar value representing ∂s̄/∂p, with 50% and 95% credible intervals.

B) Using a perturber function fperturb(x, p)—an arbitrary transformation of the inputs—
applied to the test set, where the magnitude of perturbation is parameterised by p:

1. Choose discrete values of p to be tested.
2. For each value of p to be tested, pj , transform the test set such that X ′

j =
fperturb(Xtest, pj).

3. Collect predictions from the model for X ′
j (using model.predict() or a user-supplied

method), and note the scores for the correct classes, ŷ.
4. Calculate the mean score s̄ in the correct class for each pj , and the standard deviation.
5. Plot s̄ as a function of p.
6. Estimate the significance of the effect using Bayesian linear regression2, producing a

scalar value representing ∂s̄/∂p, with 50% and 95% credible intervals.

In the first case, A), Sensie can optionally forego binning by P, and treat every element as a
data point in determining the trend.

Figure 1: Left: Output from Sensie for a model trained to recognise handwritten digits, testing
model sensitivity to rotation. Error bars show the standard deviation for the mean ground-truth-class
score. Right: Sensitivity of a model to an applied blur of the input image data, showing a linear fit
to a significant region.

Discussion and conclusion

Sensie helps the model user to quickly identify sensitivities of the accuracy to various prop-
erties of the input. This may identify deficiencies in the training set; for instance, if we
expect an image classifier to be robust under a particular transformation such as rotation or
translation, Sensie can quickly quantify whether such a transformation has a statistically
significant effect on the accuracy across the test set. Figure 1 shows two examples; on the
left, an output plot from Sensie showing the sensitivity of a trained model to rotation of the
input images; the fact that the curve is not flat indicates that the model is highly sensitive to

2See https://docs.pymc.io/notebooks/GLM-linear.html for an example using the PyMC3 probabilistic pro-
gramming framework.
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input orientation and that this is a significant feature (or bug) of the training process. On the
right, the sensitivity of a trained model to a Gaussian blur applied to the model, along with
a fit indicating the magnitude of the effect. The sensitivity to any given property, i.e. the
curve s̄ vs p, may not be linear. In this case, a fit using linear regression may produce a less
meaningful result.
Sensie has been successfully applied to a model trained for astronomical classification (Jacobs
et al., 2019) to indicate the model’s sensitivity to the scale of features present in the input; the
signal-to-noise ratio of the input data; the colours of the input; and astrophysical properties
of the objects present in an input image.
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