
fastSF: A parallel code for computing the structure
functions of turbulence
Shubhadeep Sadhukhan1, Shashwat Bhattacharya2, and Mahendra K.
Verma1

1 Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India 2
Department of Mechanical Engineering, Indian Institute of Technology Kanpur 208016, India

DOI: 10.21105/joss.02185

Software
• Review
• Repository
• Archive

Editor: Jed Brown
Reviewers:

• @cpgr
• @iljah

Submitted: 06 February 2020
Published: 16 January 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Turbulence is a complex phenomenon in fluid dynamics involving nonlinear interactions be-
tween multiple scales. Structure functions are popular diagnostics in the study of statistical
properties properties of turbulent flows (Frisch, 1995; Kolmogorov, 1941a, 1941b). Some of
the earlier works comprising of such analysis are those of Gotoh et al. (2002), Ishihara et al.
(2003), and Ishihara & Gotoh (2009) for three-dimensional (3D) hydrodynamic turbulence;
Yeung et al. (2005) and Ray et al. (2008) for passive scalar turbulence; Biferale et al. (2004)
for two-dimensional (2D) hydrodynamic turbulence; and Kunnen et al. (2008), Kaczorowski
& Xia (2013), and Bhattacharya et al. (2019) for turbulent thermal convection. Structure
functions are two-point statistical quantities; thus, an accurate computation of these quanti-
ties requires averaging over many points. However, incorporation of a large number of points
makes the computations very expensive and challenging. Therefore, we require an efficient
parallel code for accurate computation of structure functions. In this paper, we describe
the design and validation of the results of fastSF, a parallel code to compute the structure
functions for a given velocity or scalar field.
fastSF is a C++ application for computing the structure functions of scalar and vector fields
on Cartesian grids of a 2D or 3D periodic box, stored as HDF5 files. The code employs MPI
(Message Passing Interface) parallelization with equal load distribution and vectorization for
efficiency on SIMD architectures. The user can select the range of the orders of the structure
functions to be computed and the computed structure functions are written to HDF5 files
that can be further processed by the user.
We are not aware of any other open soure or commercial packages for computing structure
functions; prior studies have relied on in-house software that was never publicly released. As
an open source package, fastSF provides a standard high-performance implementation and
thus facilitates wider use of structure functions.
fastSF uses MPI (Pacheco, 2011) for parallelism, HDF5 (Koziol & Robinson, 2018) via H5SI
(Chatterjee & Chatterjee, 2020) for reading gridded field data and writing structure functions,
as well as blitz++ (Veldhuizen, 1998) for vectorized computation and yaml-cpp (Beder, 2019)
for reading control parameters. In the next section, we will briefly explain the velocity and
scalar structure functions in turbulent flows.

Velocity and scalar structure functions

We denote the velocity and scalar fields using u and θ respectively. The velocity difference
between any two points r and r + l is δu = u(r + l)− u(r). The difference in the parallel

Sadhukhan et al., (2021). fastSF: A parallel code for computing the structure functions of turbulence. Journal of Open Source Software, 6(57),
2185. https://doi.org/10.21105/joss.02185

1

https://doi.org/10.21105/joss.02185
https://github.com/openjournals/joss-reviews/issues/2185
https://github.com/ShubhadeepSadhukhan1993/fastSF
https://doi.org/10.5281/zenodo.4420031
https://jedbrown.org
https://github.com/cpgr
https://github.com/iljah
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02185

components of the velocity field along l is δu∥ = δu · l̂. The corresponding difference in the
perpendicular component is δu⊥ = |δu− δu∥l̂|. Assuming statistical homogeneity, we define
the longitudinal velocity structure functions of order q as

S
u∥
q (l) = ⟨(δu∥)

q⟩ = ⟨[{u(r + l)− u(r)} · l̂]q⟩, (1)

and the transverse velocity structure functions of order q as

Su⊥
q (l) = ⟨(δu⊥)

q⟩ = ⟨|δu− δu∥l̂|q⟩. (2)

Here, ⟨·⟩ denotes spatial averaging. Similarly, we can define the scalar structure functions for
the scalar field as

Sθ
q (l) = ⟨(δθ)q⟩ = ⟨[θ(r + l)− θ(r)]q⟩. (3)

For isotropic turbulence (in addition to being homogeneous), the structure functions become
functions of l, where l = |l|. The second-order velocity structure function S

u∥
q (l) provides an

estimate for the energy in the eddies of size l or less (Davidson, 2004).

Figure 1: For 3D homogeneous isotropic turbulence: plots of the negative of normalized third, fifth
and seventh-order longitudinal velocity structure functions vs. l. The negative of the normalized
third-order structure function is close to 4/5 (dashed line) in the inertial range.

For 3D incompressible hydrodynamic turbulence with homegeneity and isotropy, the third-
order longitudinal velocity structure function in the inertial range (scales lying between the
large-scale forcing regime and the small-scale dissipation regime) is given by (Frisch, 1995;
Kolmogorov, 1941a, 1941b)

S
u∥
3 (l) = −4

5
ϵl ∼ −l, (4)

where ϵ is the viscous dissipation rate. For an arbitrary order q, She & Leveque (1994)
proposed that the longitudinal structure functions scale as S

u∥
q (l) ∼ ζq, where the exponent

Sadhukhan et al., (2021). fastSF: A parallel code for computing the structure functions of turbulence. Journal of Open Source Software, 6(57),
2185. https://doi.org/10.21105/joss.02185

2

https://doi.org/10.21105/joss.02185

ζq is given by

ζq =
q

9
+ 2

(
1−

(
2

3

)q/3
)
. (5)

Figure~1 exhibits the plots of the negative of the normalized 3rd, 5th, and 7th-order longi-
tudinal velocity structure functions computed using the simulation data of 3D hydrodynamic
turbulence (Sadhukhan et al., 2019). The structure functions are normalized by (ϵl)ζq , where
ζq is given by Eq. (5). In the inertial range (0.2 < l < 0.7), the normalized third-order longitu-
dinal velocity structure function is fairly close to 4/5 (represented by dashed line), consistent
with Kolmogorov’s theory. Moreover, the normalized fifth and seventh-order structure func-
tions show a plateau for the same range of l, thus exhibiting consistency with She-Leveque’s
model.
In the next section, we provide a brief description of the code.

Design of the Code

In this section, we present a sketch of the structure function computation for the velocity
structure functions. We employ vectorization and loops over l, thus requiring three loops for
3D fields and two loops for 2D fields. In the following, we provide the algorithm for structure
function computation for a 2D velocity field.
Pseudo-code

Data: Velocity field u in domain (Lx, Lz); number of processors P .
Procedure:

• Divide l’s among various processors. The process of data division among the processors
has been described later in this section.

• For every processor:

– for l = (lx, lz) assigned to the processor:
∗ Compute δu(lx, lz) by taking the difference between two points with the same

indices in pink and green subdomains as shown in Fig. 2. This feature enables
vectorized subtraction operation.

∗ δu∥(lx, lz) = δu · l̂ (Vectorized).
∗ δu⊥(lx, lz) = |δu− δu∥l̂| (Vectorized).
∗ for order q:

· S
u∥
q (lx, lz) = Average of δuq

∥ (Vectorized).
· Su⊥

q (lx, lz) = Average of δuq
⊥ (Vectorized).

· Send the values of Su∥
q (lx, lz), Su⊥

q (lx, lz), q, lx, and lz to the root pro-
cess.

• The root process stores S
u∥
q (lx, lz) and Su⊥

q (lx, lz).

• Stop

Sadhukhan et al., (2021). fastSF: A parallel code for computing the structure functions of turbulence. Journal of Open Source Software, 6(57),
2185. https://doi.org/10.21105/joss.02185

3

https://doi.org/10.21105/joss.02185

Figure 2: The velocity difference δu(l) is computed by taking the difference between two points with
the same indices in the pink and the green subdomains. For example, u(l)−u(0, 0) = uB−uA, where
B and A are the origins of the green and the pink subdomains. This feature enables vecotrization of
the computation.

Since Su
q (l) is important for intermediate scales (inertial range) only, we vary l upto half the

domain size, that is, upto (Lx/2, Lz/2), to save computational cost. The l’s are divided
among MPI processors along x and z directions. Each MPI processor computes the structure
functions for the points assigned to it and has access to the entire input data. After computing
the structure function for a given l, each processor communicates the result to the root process,
which stores the S

u∥
q (l) and Su⊥

q (l) arrays.
It is clear from Fig. 2 that the sizes of the pink or green subdomains are (Lx − lx)(Lz −
lz), which are function of l’s. This function decreases with increasing l leading to larger
computational costs for small l and less cost of larger l. Hence, a straightforward division of the
domain among the processors along x and z directions will lead to a load imbalance. Therefore,
we assign both large and small l’s to each processor to achieve equal load distribution. We
illustrate the above idea using the following example.
Consider a one-dimensional domain of size L = 15, for which the possible l’s are

l = {0, 1, 2, 3...15}.

We need to compute the structure functions for l ranging from 0 to 7. We divide the task
among four processors, with two l’s assigned to each processor. The following distribution of

Sadhukhan et al., (2021). fastSF: A parallel code for computing the structure functions of turbulence. Journal of Open Source Software, 6(57),
2185. https://doi.org/10.21105/joss.02185

4

https://doi.org/10.21105/joss.02185

l’s ensures equal load distribution:

Processor 0: l = {0, 7},
∑

(L− l) = (15− 0) + (15− 7) = 23,

Processor 1: l = {1, 6},
∑

(L− l) = (15− 1) + (15− 6) = 23,

Processor 2: l = {2, 5},
∑

(L− l) = (15− 2) + (15− 5) = 23,

Processor 3: l = {3, 4},
∑

(L− l) = (15− 3) + (15− 4) = 23.

Similarly, if two processors are used, then the following distribution results in load balance.

Processor 0: l = {0, 7, 2, 5},

Processor 1: l = {1, 6, 3, 4}.

This idea of load distribution has been implemented in our program and has been extended
to higher dimensions.
Note that for 2D, lx > 0, but lz can take both positive and negative values. However, for
isotropic turbulence, the structure functions for +lz and −lz are statistically equal. Therefore,
in our computations, we restrict to lx > 0, lz > 0. For anisotropic turbulence, not discussed
here, the structure functions will depend on (lx, lz) rather than l; our code will be extended
to such systems in future.
For 3D turbulence, the structure functions will depend on (lx, ly, lz). We divide the tasks
among processors over lx and ly as done above for 2D turbulence. The aforementioned
algorithm can be easily extended to the 3D case. We employ a similar method for the
computation of scalar structure functions as well.
In the next section, we discuss the scaling of our code.

Scaling of fastSF

fastSF is scalable over many processors due to vectorization and equal load distribution. We
demonstrate the scaling of fastSF for the third-order longitudinal structure function for an
idealized velocity field on a 1283 grid. For our computation we employ a maximum of 1024
cores. We take the velocity field as

u =

xy
z

 .

We perform four runs on a Cray XC40 system (Shaheen II of KAUST) for this problem using
a total of 16, 64, 256, and 1024 cores. We used 16 cores per node for each run. In Fig. 3,
we plot the inverse of time taken in seconds versus the number of cores. The best fit curve
for these data points yields

T−1 ∼ p0.986±0.002,

Thus, the data-points follow T−1 ∼ p curve to a good approximation. Hence, we conclude
that our code exhibits good scaling.

Sadhukhan et al., (2021). fastSF: A parallel code for computing the structure functions of turbulence. Journal of Open Source Software, 6(57),
2185. https://doi.org/10.21105/joss.02185

5

https://doi.org/10.21105/joss.02185

Figure 3: Scaling of fastSF for the computation of third-order longitudinal velocity structure function
using 16, 64, 256, and 1024 processors of Shaheen II. All the runs were conducted on a 1283 grid.
We observe a linear scaling.

Conclusions

This paper provides a brief description of fastSF, an efficient parallel C++ code that com-
putes structure functions for given velocity and scalar fields. This code is shown to be scalable
over many processors. An earlier version of the code was used by Bhattacharya et al. (2019)
for analyzing the structure functions of turbulent convection. We believe that fastSF will be
useful to turbulence community as it facilitates wider use of structure functions.

Acknowledgements

We thank Roshan Samuel, Anando Chatterjee, Soumyadeep Chatterjee, and Manohar Sharma
for helpful discussions during the development of fastSF. We are grateful to Jed Brown, Ilja
Honkonen, and Chris Green for a careful review of our work and their useful suggestions. Our
computations were performed on Shaheen II at KAUST supercomputing laboratory, Saudi
Arabia, under the project k1416.

References

Beder, J. (2019). yaml-cpp, A YAML parser and emitter for C++. [Computer Software]
https://github.com/jbeder/yaml-cpp.

Bhattacharya, S., Sadhukhan, S., Guha, A., & Verma, M. K. (2019). Similarities between
the structure functions of thermal convection and hydrodynamic turbulence. Physics of
Fluids, 31(11), 115107. https://doi.org/10.1063/1.5119905

Biferale, L., Cencini, M., Lanotte, A. S., Sbragaglia, M., & Toschi, F. (2004). Anomalous
scaling and universality in hydrodynamic systems with power-law forcing. New Journal of
Physics, 6, 37. https://doi.org/10.1088/1367-2630/6/1/037

Sadhukhan et al., (2021). fastSF: A parallel code for computing the structure functions of turbulence. Journal of Open Source Software, 6(57),
2185. https://doi.org/10.21105/joss.02185

6

https://github.com/jbeder/yaml-cpp
https://doi.org/10.1063/1.5119905
https://doi.org/10.1088/1367-2630/6/1/037
https://doi.org/10.21105/joss.02185

Chatterjee, A., & Chatterjee, S. (2020). H5SI. [Computer Software] https://https://github.
com/anandogc/h5si.

Davidson, P. A. (2004). Turbulence: An Introduction for Scientists and Engineers. Oxford
University Press. https://doi.org/10.1093/acprof:oso/9780198722588.001.0001

Frisch, U. (1995). Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
https://doi.org/10.1017/CBO9781139170666

Gotoh, T., Fukayama, D., & Nakano, T. (2002). Velocity field statistics in homogeneous
steady turbulence obtained using a high-resolution direct numerical simulation. Physics of
Fluids, 14(3), 1065–1081. https://doi.org/10.1063/1.1448296

Ishihara, T., & Gotoh, T. (2009). Study of high-Reynolds number isotropic turbulence by
direct numerical simulation. Annual Review of Fluid Mechanics, 41(1), 165–180. https:
//doi.org/10.1146/annurev.fluid.010908.165203

Ishihara, T., Yokokawa, M., Itakura, K., & Uno, A. (2003). Energy dissipation rate and energy
spectrum in high resolution direct numerical simulations of turbulence in a periodic box.
Physics of Fluids, 15(2), L21. https://doi.org/10.1063/1.1539855

Kaczorowski, M., & Xia, K.-Q. (2013). Turbulent flow in the bulk of Rayleigh-Bénard con-
vection: small-scale properties in a cubic cell. Journal of Fluid Mechanics, 722, 596–617.
https://doi.org/10.1017/jfm.2013.74

Kolmogorov, A. N. (1941a). Dissipation of Energy in Locally Isotropic Turbulence. Doklady
Academii Nauk SSSR, 32(1), 16–18. https://doi.org/10.1098/rspa.1991.0076

Kolmogorov, A. N. (1941b). The local structure of turbulence in incompressible viscous
fluid for very large Reynolds numbers. Doklady Academii Nauk SSSR, 30(4), 301–305.
https://doi.org/10.1098/rspa.1991.0075

Koziol, Q., & Robinson, D. (2018). HDF5. [Computer Software] https://doi.org/10.11578/
dc.20180330.1.

Kunnen, R. P. J., Clercx, H. J. H., Geurts, B. J., Bokhoven, L. J. A. van, Akkermans, R. A.
D., & Verzicco, R. (2008). Numerical and experimental investigation of structure-function
scaling in turbulent Rayleigh-Bénard convection. Physical Review E, 77(1), 016302. https:
//doi.org/10.1103/PhysRevE.77.016302

Pacheco, P. S. (2011). An introduction to parallel programming. Morgan Kaufmann. https:
//doi.org/10.1016/C2009-0-18471-4

Ray, S. S., Mitra, D., & Pandit, R. (2008). The universality of dynamic multiscaling in homo-
geneous, isotropic Navier-Stokes and passive-scalar turbulence. New Journal of Physics,
10(3), 033003. https://doi.org/10.1088/1367-2630/10/3/033003

Sadhukhan, S., Samuel, R., Verma, M. K., Stepanov, R., Plunian, F., & Samtaney, R. (2019).
Enstrophy transfers in helical turbulence. Physical Review Fluids, 4, 84607. https://doi.
org/10.1103/PhysRevFluids.4.084607

She, Z.-S., & Leveque, E. (1994). Universal scaling laws in fully developed turbulence. Phys-
ical Review Letters, 72(3), 336–339. https://doi.org/10.1103/PhysRevLett.72.336

Veldhuizen, T. L. (1998). Arrays in blitz++. International Symposium on Comput-
ing in Object-Oriented Parallel Environments, 223–230. https://doi.org/10.1007/
3-540-49372-7_24

Yeung, P. K., Donzis, D. A., & Sreenivasan, K. R. (2005). High-Reynolds-number simulation
of turbulent mixing. Physics of Fluids, 17(8), 081703. https://doi.org/10.1063/1.2001690

Sadhukhan et al., (2021). fastSF: A parallel code for computing the structure functions of turbulence. Journal of Open Source Software, 6(57),
2185. https://doi.org/10.21105/joss.02185

7

https://https://github.com/anandogc/h5si
https://https://github.com/anandogc/h5si
https://doi.org/10.1093/acprof:oso/9780198722588.001.0001
https://doi.org/10.1017/CBO9781139170666
https://doi.org/10.1063/1.1448296
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1063/1.1539855
https://doi.org/10.1017/jfm.2013.74
https://doi.org/10.1098/rspa.1991.0076
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.11578/dc.20180330.1
https://doi.org/10.11578/dc.20180330.1
https://doi.org/10.1103/PhysRevE.77.016302
https://doi.org/10.1103/PhysRevE.77.016302
https://doi.org/10.1016/C2009-0-18471-4
https://doi.org/10.1016/C2009-0-18471-4
https://doi.org/10.1088/1367-2630/10/3/033003
https://doi.org/10.1103/PhysRevFluids.4.084607
https://doi.org/10.1103/PhysRevFluids.4.084607
https://doi.org/10.1103/PhysRevLett.72.336
https://doi.org/10.1007/3-540-49372-7_24
https://doi.org/10.1007/3-540-49372-7_24
https://doi.org/10.1063/1.2001690
https://doi.org/10.21105/joss.02185

	Summary
	Velocity and scalar structure functions
	Design of the Code
	Scaling of fastSF
	Conclusions
	Acknowledgements
	References

