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Summary

Turbulence is a complex phenomenon in fluid dynamics involving nonlinear interactions be-
tween multiple scales. Structure functions are popular diagnostics in the study of statistical
properties properties of turbulent flows (Frisch, 1995; Kolmogorov, 1941a, 1941b). Some of
the earlier works comprising of such analysis are those of Gotoh et al. (2002), Ishihara et al.
(2003), and Ishihara & Gotoh (2009) for three-dimensional (3D) hydrodynamic turbulence;
Yeung et al. (2005) and Ray et al. (2008) for passive scalar turbulence; Biferale et al. (2004)
for two-dimensional (2D) hydrodynamic turbulence; and Kunnen et al. (2008), Kaczorowski
& Xia (2013), and Bhattacharya et al. (2019) for turbulent thermal convection. Structure
functions are two-point statistical quantities; thus, an accurate computation of these quanti-
ties requires averaging over many points. However, incorporation of a large number of points
makes the computations very expensive and challenging. Therefore, we require an efficient
parallel code for accurate computation of structure functions. In this paper, we describe
the design and validation of the results of fastSF, a parallel code to compute the structure
functions for a given velocity or scalar field.
fastSF is a C++ application for computing the structure functions of scalar and vector fields
on Cartesian grids of a 2D or 3D periodic box, stored as HDF5 files. The code employs MPI
(Message Passing Interface) parallelization with equal load distribution and vectorization for
efficiency on SIMD architectures. The user can select the range of the orders of the structure
functions to be computed and the computed structure functions are written to HDF5 files
that can be further processed by the user.
We are not aware of any other open soure or commercial packages for computing structure
functions; prior studies have relied on in-house software that was never publicly released. As
an open source package, fastSF provides a standard high-performance implementation and
thus facilitates wider use of structure functions.
fastSF uses MPI (Pacheco, 2011) for parallelism, HDF5 (Koziol & Robinson, 2018) via H5SI
(Chatterjee & Chatterjee, 2020) for reading gridded field data and writing structure functions,
as well as blitz++ (Veldhuizen, 1998) for vectorized computation and yaml-cpp (Beder, 2019)
for reading control parameters. In the next section, we will briefly explain the velocity and
scalar structure functions in turbulent flows.

Velocity and scalar structure functions

We denote the velocity and scalar fields using u and θ respectively. The velocity difference
between any two points r and r + l is δu = u(r + l)− u(r). The difference in the parallel
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components of the velocity field along l is δu∥ = δu · l̂. The corresponding difference in the
perpendicular component is δu⊥ = |δu− δu∥l̂|. Assuming statistical homogeneity, we define
the longitudinal velocity structure functions of order q as

S
u∥
q (l) = ⟨(δu∥)

q⟩ = ⟨[{u(r + l)− u(r)} · l̂]q⟩, (1)

and the transverse velocity structure functions of order q as

Su⊥
q (l) = ⟨(δu⊥)

q⟩ = ⟨|δu− δu∥l̂|q⟩. (2)

Here, ⟨·⟩ denotes spatial averaging. Similarly, we can define the scalar structure functions for
the scalar field as

Sθ
q (l) = ⟨(δθ)q⟩ = ⟨[θ(r + l)− θ(r)]q⟩. (3)

For isotropic turbulence (in addition to being homogeneous), the structure functions become
functions of l, where l = |l|. The second-order velocity structure function S

u∥
q (l) provides an

estimate for the energy in the eddies of size l or less (Davidson, 2004).

Figure 1: For 3D homogeneous isotropic turbulence: plots of the negative of normalized third, fifth
and seventh-order longitudinal velocity structure functions vs. l. The negative of the normalized
third-order structure function is close to 4/5 (dashed line) in the inertial range.

For 3D incompressible hydrodynamic turbulence with homegeneity and isotropy, the third-
order longitudinal velocity structure function in the inertial range (scales lying between the
large-scale forcing regime and the small-scale dissipation regime) is given by (Frisch, 1995;
Kolmogorov, 1941a, 1941b)

S
u∥
3 (l) = −4

5
ϵl ∼ −l, (4)

where ϵ is the viscous dissipation rate. For an arbitrary order q, She & Leveque (1994)
proposed that the longitudinal structure functions scale as S

u∥
q (l) ∼ ζq, where the exponent
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ζq is given by

ζq =
q

9
+ 2

(
1−

(
2

3

)q/3
)
. (5)

Figure~1 exhibits the plots of the negative of the normalized 3rd, 5th, and 7th-order longi-
tudinal velocity structure functions computed using the simulation data of 3D hydrodynamic
turbulence (Sadhukhan et al., 2019). The structure functions are normalized by (ϵl)ζq , where
ζq is given by Eq. (5). In the inertial range (0.2 < l < 0.7), the normalized third-order longitu-
dinal velocity structure function is fairly close to 4/5 (represented by dashed line), consistent
with Kolmogorov’s theory. Moreover, the normalized fifth and seventh-order structure func-
tions show a plateau for the same range of l, thus exhibiting consistency with She-Leveque’s
model.
In the next section, we provide a brief description of the code.

Design of the Code

In this section, we present a sketch of the structure function computation for the velocity
structure functions. We employ vectorization and loops over l, thus requiring three loops for
3D fields and two loops for 2D fields. In the following, we provide the algorithm for structure
function computation for a 2D velocity field.
Pseudo-code

Data: Velocity field u in domain (Lx, Lz); number of processors P .
Procedure:

• Divide l’s among various processors. The process of data division among the processors
has been described later in this section.

• For every processor:

– for l = (lx, lz) assigned to the processor:
∗ Compute δu(lx, lz) by taking the difference between two points with the same

indices in pink and green subdomains as shown in Fig. 2. This feature enables
vectorized subtraction operation.

∗ δu∥(lx, lz) = δu · l̂ (Vectorized).
∗ δu⊥(lx, lz) = |δu− δu∥l̂| (Vectorized).
∗ for order q:

· S
u∥
q (lx, lz) = Average of δuq

∥ (Vectorized).
· Su⊥

q (lx, lz) = Average of δuq
⊥ (Vectorized).

· Send the values of Su∥
q (lx, lz), Su⊥

q (lx, lz), q, lx, and lz to the root pro-
cess.

• The root process stores S
u∥
q (lx, lz) and Su⊥

q (lx, lz).

• Stop
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Figure 2: The velocity difference δu(l) is computed by taking the difference between two points with
the same indices in the pink and the green subdomains. For example, u(l)−u(0, 0) = uB−uA, where
B and A are the origins of the green and the pink subdomains. This feature enables vecotrization of
the computation.

Since Su
q (l) is important for intermediate scales (inertial range) only, we vary l upto half the

domain size, that is, upto (Lx/2, Lz/2), to save computational cost. The l’s are divided
among MPI processors along x and z directions. Each MPI processor computes the structure
functions for the points assigned to it and has access to the entire input data. After computing
the structure function for a given l, each processor communicates the result to the root process,
which stores the S

u∥
q (l) and Su⊥

q (l) arrays.
It is clear from Fig. 2 that the sizes of the pink or green subdomains are (Lx − lx)(Lz −
lz), which are function of l’s. This function decreases with increasing l leading to larger
computational costs for small l and less cost of larger l. Hence, a straightforward division of the
domain among the processors along x and z directions will lead to a load imbalance. Therefore,
we assign both large and small l’s to each processor to achieve equal load distribution. We
illustrate the above idea using the following example.
Consider a one-dimensional domain of size L = 15, for which the possible l’s are

l = {0, 1, 2, 3...15}.

We need to compute the structure functions for l ranging from 0 to 7. We divide the task
among four processors, with two l’s assigned to each processor. The following distribution of

Sadhukhan et al., (2021). fastSF: A parallel code for computing the structure functions of turbulence. Journal of Open Source Software, 6(57),
2185. https://doi.org/10.21105/joss.02185

4

https://doi.org/10.21105/joss.02185


l’s ensures equal load distribution:

Processor 0: l = {0, 7},
∑

(L− l) = (15− 0) + (15− 7) = 23,

Processor 1: l = {1, 6},
∑

(L− l) = (15− 1) + (15− 6) = 23,

Processor 2: l = {2, 5},
∑

(L− l) = (15− 2) + (15− 5) = 23,

Processor 3: l = {3, 4},
∑

(L− l) = (15− 3) + (15− 4) = 23.

Similarly, if two processors are used, then the following distribution results in load balance.

Processor 0: l = {0, 7, 2, 5},

Processor 1: l = {1, 6, 3, 4}.

This idea of load distribution has been implemented in our program and has been extended
to higher dimensions.
Note that for 2D, lx > 0, but lz can take both positive and negative values. However, for
isotropic turbulence, the structure functions for +lz and −lz are statistically equal. Therefore,
in our computations, we restrict to lx > 0, lz > 0. For anisotropic turbulence, not discussed
here, the structure functions will depend on (lx, lz) rather than l; our code will be extended
to such systems in future.
For 3D turbulence, the structure functions will depend on (lx, ly, lz). We divide the tasks
among processors over lx and ly as done above for 2D turbulence. The aforementioned
algorithm can be easily extended to the 3D case. We employ a similar method for the
computation of scalar structure functions as well.
In the next section, we discuss the scaling of our code.

Scaling of fastSF

fastSF is scalable over many processors due to vectorization and equal load distribution. We
demonstrate the scaling of fastSF for the third-order longitudinal structure function for an
idealized velocity field on a 1283 grid. For our computation we employ a maximum of 1024
cores. We take the velocity field as

u =

xy
z

 .

We perform four runs on a Cray XC40 system (Shaheen II of KAUST) for this problem using
a total of 16, 64, 256, and 1024 cores. We used 16 cores per node for each run. In Fig. 3,
we plot the inverse of time taken in seconds versus the number of cores. The best fit curve
for these data points yields

T−1 ∼ p0.986±0.002,

Thus, the data-points follow T−1 ∼ p curve to a good approximation. Hence, we conclude
that our code exhibits good scaling.
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Figure 3: Scaling of fastSF for the computation of third-order longitudinal velocity structure function
using 16, 64, 256, and 1024 processors of Shaheen II. All the runs were conducted on a 1283 grid.
We observe a linear scaling.

Conclusions

This paper provides a brief description of fastSF, an efficient parallel C++ code that com-
putes structure functions for given velocity and scalar fields. This code is shown to be scalable
over many processors. An earlier version of the code was used by Bhattacharya et al. (2019)
for analyzing the structure functions of turbulent convection. We believe that fastSF will be
useful to turbulence community as it facilitates wider use of structure functions.
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