The Journal of Open Source Software

DOI: 10.21105/joss.02260

Software
= Review @
= Repository &7
= Archive &

Editor: Matthew Sottile ¢&
Reviewers:
= ©@adam-m-jcbs

= ©zeroset

Submitted: 20 May 2020
Published: 31 August 2020

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Ginkgo: A high performance numerical linear algebra
library

Hartwig Anzt! 2, Terry Cojean', Yen-Chen Chen*, Goran Flegar®, Fritz
Gobel', Thomas Griitzmacher!, Pratik Nayak!, Tobias Ribizel', and
Yu-Hsiang Tsail!

1 Karlsruhe Institute of Technology 2 Innovative Computing Laboratory, University of Tennessee,
Knoxville 3 University of Jaume | 4 The University of Tokyo

Summary

Ginkgo is a production-ready sparse linear algebra library for high performance computing on
GPU-centric architectures with a high level of performance portability and focuses on software
sustainability.

The library focuses on solving sparse linear systems and accommodates a large variety of
matrix formats, state-of-the-art iterative (Krylov) solvers and preconditioners, which make
the library suitable for a variety of scientific applications. Ginkgo supports many architectures
such as multi-threaded CPU, NVIDIA GPUs, and AMD GPUs. The heavy use of modern
C++ features simplifies the addition of new executor paradigms and algorithmic functionality
without introducing significant performance overhead.

Solving linear systems is usually one of the most computationally and memory intensive aspects
of any application. Hence there has been a significant amount of effort in this direction with
software libraries such as UMFPACK (Davis, 2004) and CHOLMOD (Chen, Davis, Hager, &
Rajamanickam, 2008) for solving linear systems with direct methods and PETSc (Balay et
al., 2020), Trilinos (“The Trilinos Project Website,” 2020), Eigen (Guennebaud, Jacob, &
others, 2010) and many more to solve linear systems with iterative methods. With Ginkgo,
we aim to ensure high performance while not compromising portability. Hence, we provide
very efficient low level kernels optimized for different architectures and separate these kernels
from the algorithms thereby ensuring extensibility and ease of use.

Ginkgo is also a part of the xSDK effort (Bartlett et al., 2017) and available as a Spack
(Gamblin et al., 2015) package. xSDK aims to provide infrastructure for and interoperability
between a collection of related and complementary software elements to foster rapid and
efficient development of scientific applications using High Performance Computing. Within
this effort, we provide interoperability with application libraries such as deal.ii (Arndt et al.,
2019) and mfem (Anderson et al., 2020). Ginkgo provides wrappers within these two libraries
so that they can take advantage of the features of Ginkgo.

Features

As sparse linear algebra is one of the main focus of Ginkgo, we provide a variety of sparse matrix
formats such as COO, CSR, ELL, HYBRID and SELLP along with highly tuned Sparse Matrix
Vector product (SpMV) kernels (Anzt et al., 2020). The SpMV kernel is a key building block of
virtually all iterative solvers and typically accounts for a significant fraction of the application

Anzt et al.,, (2020). Ginkgo: A high performance numerical linear algebra library. Journal of Open Source Software, 5(52), 2260. https: 1

//doi.org/10.21105/joss.02260

https://doi.org/10.21105/joss.02260
https://github.com/openjournals/joss-reviews/issues/2260
https://github.com/ginkgo-project/ginkgo
https://doi.org/10.5281/zenodo.4003613
http://noddle.io
https://github.com/adam-m-jcbs
https://github.com/zeroset
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260

The Journal of Open Source Software

runtime. Additionally, we also provide high performance conversion routines between the
different formats enhancing their flexibility.

Ginkgo provides multiple iterative solvers such as the Krylov subspace methods: Conjugate
Gradient (CG), Flexible Conjugate Gradient (FCG), Bi-Conjugate Gradient (BiCG) and its
stabilized version (Bi-CGSTAB), Generalized Minimal Residual Method (GMRES) and more
generic methods such as lterative Refinement (IR), which forms the basis of many relax-
ation methods. Ginkgo also features support for direct and iterative triangular solves within
incomplete factorization preconditioners.

Ginkgo features some state-of-the-art general-purpose preconditioners such as the Block Ja-
cobi preconditioner with support for a version which reduces pressure on the memory band-
width by dynamically adapting the memory precision to the numerical requirements. This
approach (Anzt et al., 2019a) has been shown to be very efficient for problems with a block
structure. Ginkgo also features highly-parallel incomplete factorization preconditioners such as
the ParlLU and the ParlLUT preconditioners (Anzt et al., 2019b) and Approximate Inverse pre-
conditioners such as the Incomplete Sparse Approximate Inverse preconditioner (Anzt, Huckle,
Brackle, & Dongarra, 2018). A detailed feature overview including design and implementation
of all algorithms in Ginkgo with performance results is elaborated in the Ginkgo paper (Anzt
et al., 2020).

Software extensibility and sustainability.

Ginkgo is extensible in terms of linear algebra solvers, preconditioners and matrix formats.
Basing on modern C++ (C++11 standard), various language features such as data abstrac-
tion, generic programming and automatic memory management are leveraged to enhance the
performance of the library while still maintaining ease of use and maintenance.

The Ginkgo library is constructed around two principal design concepts. The first one is the
class and object-oriented design based in part on linear operators which aims to provide an
easy to use interface, common for all the devices and linear algebra objects. This allows
users to easily cascade solvers, preconditioners or matrix formats and tailor solvers for their
needs in a seamless fashion. The second main design concept consists of the low level device
specific kernels. These low level kernels are optimized for the specific device and make use of
C++ features such as templates to generate high-performance kernels for a wide variety of
parameters.

Anzt et al.,, (2020). Ginkgo: A high performance numerical linear algebra library. Journal of Open Source Software, 5(52), 2260. https: 2

//doi.org/10.21105/joss.02260

https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260

The Journal of Open Source Software

PolymarphicObject
[LinOp Abstract:Factory |
3
g natric N stop —lsolvar |——
o] Bic (Teerstiomtuctory JH{ Biogaactory
(o Bicgatab [TimesFactary —{_ Biegstab::Factory
Dense Cgm) ResldualNorm | CgrFactary
Red uctlon:Factory
D T =
o H Cgai Factory
Norm:Factory i
. ;
Ir) { Gmres: Factory
UpperTrs)| = =

+ get_sxscutar{)
+ 2dd_loggert)
+ Tamave_lagger(}

el preconditioner jpm
LowerTrs { LowerTesiFactory
¥

UpperTrs:Fact.
= =

+ clonat)
+ copy_frant} =
=R Ihu<Parlct>:Factory

2pplyl}
precondizioner e | ||+ comvert_ta()
|4+ nava_zaty
et i)
+ gat_procanditimar(}
+ ast_pracanditimer ()

[Er
Tdentlty

[Pormmtation |

=)

get_mecutar(} Tln<Parllut=:Factory
sot_siza() \)
2dd logger ()

Figure 1: Core architecture of Ginkgo. All solvers, preconditioners and matrix formats are accessible
through the same LinOp interface.

Ginkgo adopts a rigorous approach to testing and maintenance. Using continuous integration
tools such as Gitlab-Cl and Github-Actions, we make sure that the library builds on a range
of compilers and environments. To verify that our code quality is of the highest standards we
use the Sonarcloud platform (“Sonarcloud - a source code analyzer.” 2020), a code analyzer
to analyze and report any code smells. To ensure correctness of the code, we use the Google
Test library (“Googletest - google testing and mocking framework.” 2020) to rigorously test
each of the device specific kernels and the core framework of the library.

Performance and Benchmarking

The Ginkgo software is tailored for High Performance Computing and provides high perfor-
mance implementations on modern manycore architectures. In particular, Ginkgo is com-
petitive with hardware vendor libraries such as hipSPARSE and cuSPARSE (Tsai, Cojean, &
Anzt, 2020). The two following figures highlight this fact by comparing the performance of
Ginkgo's Hybrid and CSR SpMV kernels against the counterparts from the vendor libraries
AMD hipSPARSE and NVIDIA cuSPARSE for all matrices available in the Suite Sparse Matrix
Collection.

Anzt et al.,, (2020). Ginkgo: A high performance numerical linear algebra library. Journal of Open Source Software, 5(52), 2260. https: 3

//doi.org/10.21105 /joss.02260

https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260

The Journal of Open Source Software

Performance vs Nonzero Count Performance vs Nonzero Coun

t
mm Ginkgo Hybrid is faster = cuSPARSE Hybrid is faster perz mm Ginkgo Hybrid is faster s hipSPARSE Hybrid is faster

5e+0
1e+2

Se+l

2e+1

1e+l

PR P gy

2e-1

le-1 le-1
“1e+s 5e+5 2e+6 1e+7 Se+T 2e+8 5et8 1e+5 Se+5 2e+6 le+7 Se+T 2e+8 5e+8

Nonzero Count Nonzero Count

Figure 2: Ginkgo Hybrid spmv provides better performance than (left) cuSPARSE and (right)
hipSPARSE

Performance vs Nonzero Count Performance vs Nonzero Count
mm Ginkgo CSR is faster mms cuSPARSE CSR is faster = Ginkgo CSR is faster mmhipSPARSE CSR is faster

1e-2
“Tess 5e+5 2e+6 1e+7 Se+7 2e+8 1e+9 1e+5 5e+5 2e+6 1e+7 e+ 2e+8 1e+9
Nonzero Count Nonzero Count

Figure 3: Ginkgo CSR spmv performance is competitive against (left) cuSPARSE and (right)
hipSPARSE

Ginkgo provides comprehensive logging facilities both in-house and with interfaces to external
libraries such as PAPI (Terpstra, Jagode, You, & Dongarra, 2010). This allows for detailed
analysis of the kernels while reducing the intellectual overhead of optimizing the applications.

To enhance reproducibility from a performance perspective, the Ginkgo project aims at pro-
viding Continuous Benchmarking on top of its extensive Continuous Integration setup (Anzt,
Chen, et al., 2019). To this end, we provide the performance results of our kernel imple-
mentations in an open source git repository. A unique feature of Ginkgo is the availability
of an interactive webtool, the Ginkgo Performance explorer (“Ginkgo performance explorer,”
2020), which can plot results from the aforementioned data repository. Additionally, we have
also put in some effort in making benchmarking easier, within the Ginkgo repository using
the rapidjson (“RapidJSON - a fast JSON parser/generator for c++,” 2020) and gflags
(“gflags - a c++ library that implements commandline flags processing.” 2020) libraries to
run and generate benchmarking results for a variety of Ginkgo features.

Acknowledgements

Research and software development in Ginkgo received support from the Helmholtz association
(Impuls und Vernetzungsfond VH-NG-1241), and the US Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

Anzt et al.,, (2020). Ginkgo: A high performance numerical linear algebra library. Journal of Open Source Software, 5(52), 2260. https: 4

//doi.org/10.21105/joss.02260

https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260

The Journal of Open Source Software

References

Anderson, R., Andrej, J., Barker, A., Bramwell, J., Camier, J.-S., Cerveny, J., Dobrev, V., et
al. (2020). MFEM: A modular finite element methods library. Computers & Mathematics
with Applications. doi:10.1016/j.camwa.2020.06.009

Anzt, H., Chen, Y.-C., Cojean, T., Dongarra, J., Flegar, G., Nayak, P., Quintana-Orti, E. S.,
et al. (2019). Towards continuous benchmarking: An automated performance evaluation
framework for high performance software. In Proceedings of the platform for advanced sci-
entific computing conference, PASC '19. New York, NY, USA: Association for Computing
Machinery. doi:10.1145/3324989.3325719

Anzt, H., Cojean, T., Flegar, G., Gobel, F., Gritzmacher, T., Nayak, P., Ribizel, T., et al.
(2020). Ginkgo: A Modern Linear Operator Algebra Framework for High Performance
Computing. arXiv e-prints, arXiv:2006.16852. Retrieved from http://arxiv.org/abs/2006.
16852

Anzt, H., Cojean, T., Yen-Chen, C., Dongarra, J., Flegar, G., Nayak, P., Tomov, S., et
al. (2020). Load-balancing sparse matrix vector product kernels on GPUs. ACM Trans.
Parallel Comput., 7(1). doi:10.1145/3380930

Anzt, H., Dongarra, J., Flegar, G., Higham, N. J., & Quintana-Orti, E. S. (2019a). Adaptive
precision in block-jacobi preconditioning for iterative sparse linear system solvers. Concur-
rency and Computation: Practice and Experience, 31(6), e4460. doi:10.1002/cpe.4460

Anzt, H., Huckle, T. K., Brackle, J., & Dongarra, J. (2018). Incomplete sparse approximate
inverses for parallel preconditioning. Parallel Computing, 71, 1-22. doi:10.1016/].parco.
2017.10.003

Anzt, H., Ribizel, T., Flegar, G., Chow, E., & Dongarra, J. (2019b). ParlLUT - a parallel
threshold ILU for GPUs. 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 231-241. doi:10.1109/IPDPS.2019.00033

Arndt, D., Bangerth, W., Clevenger, T. C., Davydov, D., Fehling, M., Garcia-Sanchez, D.,
Harper, G., et al. (2019). The deal.II library, version 9.1. Journal of Numerical
Mathematics. doi:10.1515/jnma-2019-0064

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
et al. (2020). PETSc users manual (No. ANL-95/11 - Revision 3.13). Argonne National
Laboratory. Retrieved from https://www.mcs.anl.gov/petsc

Bartlett, R., Demeshko, |., Gamblin, T., Hammond, G., Heroux, M., Johnson, J., Klinvex, A.,
et al. (2017). XSDK foundations: Toward an extreme-scale scientific software develop-
ment kit. Supercomputing Frontiers and Innovations, 4(1). doi:10.14529/jsfi170104

Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887:
CHOLMOD, supernodal sparse cholesky factorization and update/downdate. ACM Trans.
Math. Softw., 35(3). doi:10.1145/1391989.1391995

Davis, T. A. (2004). Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw., 30(2), 196-199. doi:10.1145/992200.992206

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski, B. R., &
Futral, S. (2015). The spack package manager: Bringing order to HPC software chaos.
In SC '15: Proceedings of the international conference for high performance computing,
networking, storage and analysis (pp. 1-12).

gflags - a c++ library that implements commandline flags processing. (2020).GitHub reposi-
tory. GitHub. Retrieved from https://github.com/gflags/gflags

Ginkgo performance explorer. (2020). Retrieved from https://ginkgo-project.github.io/gpe/

Anzt et al.,, (2020). Ginkgo: A high performance numerical linear algebra library. Journal of Open Source Software, 5(52), 2260. https: 5

//doi.org/10.21105/joss.02260

https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1145/3324989.3325719
http://arxiv.org/abs/2006.16852
http://arxiv.org/abs/2006.16852
https://doi.org/10.1145/3380930
https://doi.org/10.1002/cpe.4460
https://doi.org/10.1016/j.parco.2017.10.003
https://doi.org/10.1016/j.parco.2017.10.003
https://doi.org/10.1109/IPDPS.2019.00033
https://doi.org/10.1515/jnma-2019-0064
https://www.mcs.anl.gov/petsc
https://doi.org/10.14529/jsfi170104
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/992200.992206
https://github.com/gflags/gflags
https://ginkgo-project.github.io/gpe/
https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260

The Journal of Open Source Software

Googletest - google testing and mocking framework. (2020).GitHub repository. GitHub.
Retrieved from https://github.com/google/googletest

Guennebaud, G., Jacob, B., & others. (2010). Eigen v3. http://eigen.tuxfamily.org.

RapidJSON - a fast JSON parser/generator for c++. (2020).GitHub repository. GitHub.
Retrieved from https://github.com/Tencent/rapidjson

Sonarcloud - a source code analyzer. (2020).GitHub repository. GitHub. Retrieved from
https://sonarcloud.io/

Terpstra, D., Jagode, H., You, H., & Dongarra, J. (2010). Collecting performance data
with PAPI-C. In M. S. Miiller, M. M. Resch, A. Schulz, & W. E. Nagel (Eds.), Tools for
high performance computing 2009 (pp. 157-173). Berlin, Heidelberg: Springer Berlin
Heidelberg. doi:10.1007/978-3-642-11261-4_11

The Trilinos Project Website. (2020). Retrieved from https://trilinos.github.io

Tsai, Y. M., Cojean, T., & Anzt, H. (2020). Sparse linear algebra on amd and nvidia gpus —
the race is on. In P. Sadayappan, B. L. Chamberlain, G. Juckeland, & H. Ltaief (Eds.),
High performance computing (pp. 309-327). Cham: Springer International Publishing.
doi:10.1007/978-3-030-50743-5_16

Anzt et al.,, (2020). Ginkgo: A high performance numerical linear algebra library. Journal of Open Source Software, 5(52), 2260. https: 6

//doi.org/10.21105/joss.02260

https://github.com/google/googletest
https://github.com/Tencent/rapidjson
https://sonarcloud.io/
https://doi.org/10.1007/978-3-642-11261-4_11
https://trilinos.github.io
https://doi.org/10.1007/978-3-030-50743-5_16
https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260

	Summary
	Features
	Software extensibility and sustainability.
	Performance and Benchmarking
	Acknowledgements
	References

