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Summary

Ever increasing data availability has changed the way how data is analyzed and interpreted
in many scientific fields. While the underlying complex systems remain the same, data mea-
surements increase in both quantity and dimension. The main drivers are larger computer
simulation capabilities and increasingly versatile sensors. In contrast to an equation-driven
workflow, a scientist can use data-driven models to analyze a wider range of systems, includ-
ing those with unknown or intractable equations. The models can be applied to a variety of
data-driven scenarios, such as enriching the analysis of unknown systems or merely serve as
an equation-free surrogate by providing fast, albeit approximate, responses to unseen data.
However, expanding datasets create challenges throughout the analysis workflow from ex-
tracting and processing to interpreting the data. This includes the fact that new data does
not always provide completely new and uncorrelated information to existing data. One way to
extract the essential information is to understand and parametrize the intrinsic data geometry.
An intrinsic geometry is what most data-driven models assume implicitly or explicitly in the
available data, and successful machine learning algorithms adapt to this underlying structure
for tasks like regression or classification (e.g., Bishop, 2006). This geometry is often of much
lower dimension than the ambient data space, and finding a suitable set of coordinates can
reduce the complexity of the dataset. We refer to this geometric structure encoded in the
data as a “manifold”. In mathematical terms, a manifold is a topological space that is lo-
cally homeomorphic to Euclidean space. Typically, manifold learning attempts to construct a
global parametrization (embedding) of this manifold, in a space of much lower dimension than
the original ambient space. The well-known manifold hypothesis states that such manifolds
underlie many observations and processes, including time-dependent systems.
datafold is a Python package that provides data-driven models for point clouds to find an
explicit mani-fold parametrization and to identify non-linear dynamical systems on these man-
ifolds. The explicit data manifold treatment allows prior knowledge of a system and its
problem-specific domain to be included. This can be the proximity between points in the
dataset (Coifman & Lafon, 2006a) or functions defined on the phase space manifold of a
dynamical system, such as (partially) known governing equation terms (Brunton, Proctor, &
Kutz, 2016; Williams, Kevrekidis, & Rowley, 2015).
datafold is open-source software with a design that reflects a workflow hierarchy: from low-
level data structures and algorithms to high-level meta-models intended to solve complex
machine learning tasks. The key benefit of datafold is that it accommodates and integrates
models on the different workflow levels. Each model has been investigated and tested indi-
vidually and found to be useful by the scientific community. In datafold these models can
be used in a single processing pipeline. Our integrated workflow facilitates the application of
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data-driven analysis and thus has the potential to boost widespread utilization. The imple-
mented models are integrated into a software architecture with a clear modularization and
an API that is templated from the scikit-learn project, which can be used as part of its
processing pipeline (Pedregosa et al., 2011). The data structures are subclasses from common
objects of the Python scientific computing stack, allowing models to generalize for both static
point clouds and temporally ordered time series collection data. The software design and
modularity in datafold reflects two requirements: high flexibility to test model configurations,
and openness to new model implementations with clear and well-defined scope. We want to
support active research in data-driven analysis with manifold context and thus target students,
researchers and experienced practitioners from different fields of dataset analysis.

Figure 1: (Left) Point cloud of embedded handwritten digits between 0 and 5 with the “Diffusion
Map” model. Each point originally has 64 dimensions where each dimension represents a pixel of an
8 x 8 image. (Right) Conceptual illustration of a three-dimensional time series forming a phase space
with geometrical structure. The time series start on the (x,y) plane and end on the z-axis.

1. Point cloud data

High-dimensional and unordered point clouds are often directly connected to the “manifold
assumption”, i.e. that the data lies close to a lower-dimensional manifold. Our software aims
to find a low-dimensional parametrization (embedding) of this manifold. In a machine learn-
ing context, this is also referred to as “non-linear unsupervised learning” or shorter “manifold
learning”. Often the models are endowed with a kernel which encodes the proximity between
data to preserve local structures. Examples are the general “Kernel Principal Component Anal-
ysis” (Bengio et al., 2004), “Local Linear Embedding” (Belkin & Niyogi, 2003), or “Hessian
Eigenmaps” (Donoho & Grimes, 2003). A variety of manifold learning models already exist
in the scikit-learn Python package. In addition to these, datafold provides an efficient
implementation of the “Diffusion Maps” model (Coifman & Lafon, 2006a). The model in-
cludes an optional sparse kernel matrix representation with which the model can scale to larger
datasets. In addition to non-linear dimension reduction, “Diffusion Maps” allow the user to ap-
proximate mathematically meaningful objects on manifold data, such as the Laplace-Beltrami
operator (Coifman & Lafon, 2006a). datafold also supplies functionality for follow-up aspects
of non-linear manifold learning, such as estimating the kernel scale parameters to describe the
locality of points in a dataset and extending the embedding to unseen data. The latter refers
to the image and pre-image mapping between the original and latent space (e.g., see analysis
in Chiavazzo, Gear, Dsilva, Rabin, & Kevrekidis, 2014). This so-called “out-of-sample” ex-
tension interpolates general function values on manifold point clouds and, therefore, has to
handle large input data dimensions (Coifman & Lafon, 2006b; Fernández, Rabin, Fishelov, &
Dorronsoro, 2020; Rabin & Coifman, 2012). In datafold, out-of-sample extensions are imple-
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mented efficiently, so that interpolated function values for millions of points can be computed
in seconds on a standard desktop computer.

2. Time series data

A special kind of point cloud type targeted by datafold are time series and collections thereof.
In this case, a data-driven model can fit and generalize the underlying dynamics to perform
prediction or regression. Usually, the phase space of the dynamical system, underlying the time
series observations, is assumed to be a manifold (see a conceptual illustration in Figure 1).
datafold focuses on the algorithms “Dynamic Mode Decomposition” (DMD) (Kutz, Brunton,
Brunton, & Proctor, 2016; Schmid, 2010; Tu, Rowley, Luchtenburg, Brunton, & Kutz, 2014)
and “Extended Dynamic Mode Decomposition” (E-DMD, Williams et al., 2015). DMD linearly
decomposes the available time series data into spatio-temporal components, which then define
a linear dynamical system. Many DMD based variants address even more general, non-linear
underlying dynamical systems. This is usually done by changing the time series coordinates
in a step before DMD is applied (Champion, Brunton, & Kutz, 2019; Giannakis, 2019; Le
Clainche, Vega, & Soria, 2017; Williams et al., 2015). The justification of this workflow is
covered by operator theory and functional analysis, specifically the Koopman operator. In
practice, the E-DMD algorithm approximates the Koopman operator with a matrix, based on
a finite set of functions evaluated on the available data, the so-called “dictionary”. Finding a
good choice for the dictionary is comparable to the machine learning task of “model selection”
and requires great flexibility in setting up the data processing pipeline. The flexibility of setting
an arbitrary dictionary combined with a selection of the provided DMD variants is a core feature
of datafold’s implementation of E-DMD.

Comparison to other software projects

The Python package statsmodels (Seabold & Perktold, 2010) includes statistical models for
time series analysis, such as the AutoRegressive Integrated Moving Average (ARIMA) and
variations thereof. These models usually assume an underlying stochastical process and aim to
approximate autocorrelations in time series data. Another type of popular data-driven models
are deep neural networks; widely adopted packages are the frameworks tensorflow (Abadi et
al., 2015, 2016) and PyTorch (Paszke et al., 2019). Deep learning models generalize well in
several problem domains, but common drawbacks are a non-deterministic construction process,
the requirement of large datasets, and only limited options to include prior knowledge about
the underlying system. For manifold learning, one can use (variational) autoencoders, while
recurrent architectures (e.g., LSTM networks Hochreiter & Schmidhuber, 1997) are often used
for system identification. Other packages in datafold’s scope are the Python packages PyDMD
(Demo, Tezzele, & Rozza, 2018) and PySINDy (Silva et al., 2020). The PyDMD project
includes numerous variations of DMD, such as the “Higher Order DMD” (Le Clainche et al.,
2017). The PySINDy software focuses on “Sparse Identification of Non-linear Dynamics”
(SINDy) (Brunton et al., 2016). datafold’s EDMD implementation allows an arbitrary DMD
variant to be used in a processing pipeline to regress the dynamics, which means the models
from both PyDMD and PySINDy could be used in combination with datafold.
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