
Frackit: a framework for stochastic fracture network
generation and analysis
Dennis Gläser1, Bernd Flemisch1, Holger Class1, and Rainer Helmig1

1 Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart,
Pfaffenwaldring 61, 70569 Stuttgart, Germany

DOI: 10.21105/joss.02291

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @ilyasst
• @ctdegroot

Submitted: 27 May 2020
Published: 11 December 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Frackit is a framework for the stochastic generation of fracture networks composed of two-
dimensional geometries, for instance, polygons and/or ellipses, which can be embedded in
arbitrary three-dimensional domain shapes. Great flexibility with respect to the geometries
that can be used is achieved by extensive use of the open-source Computer-Aided-Design
(CAD) library OpenCascade (opencascade.com), which furthermore provides the possibility
to export the generated networks into a variety of CAD file formats for subsequent post-
processing or meshing with other software. Besides that, output routines to the geometry file
format of Gmsh (gmsh.info/; Geuzaine & Remacle (2009)) are provided, which is an open-
source mesh generator that is widely used in academic research on numerical methods (see
e.g. Keilegavlen et al. (2020); Berge et al. (2020)). The code is written in C++, but Python
bindings are provided that allow users to access all functionality from Python.

Introduction

The numerical simulation of flow and transport phenomena in fractured porous media is an
active field of research, given the importance of fractures in many geotechnical engineering
applications, as for example groundwater management (Qian et al., 2014), enhanced oil recov-
ery techniques (Torabi et al., 2012), geothermal energy (McFarland & Murphy, 1976; Shaik
et al., 2011) or unconventional natural gas production (Sovacool, 2014). A number of math-
ematical models and numerical schemes, aiming at an accurate description of flow through
fractured rock, have been presented recently (see e.g. R. Ahmed et al. (2015); Raheel Ahmed
et al. (2017); Brenner et al. (2018); Köppel et al. (2019); Schädle et al. (2019); Nordbotten
et al. (2019)). Many of these describe the fractures as lower-dimensional geometries, that
is, as curves or planes embedded in two- or three-dimensional space, respectively. On those,
integrated balance equations are solved together with transmission conditions describing the
interaction with the surrounding medium. Moreover, many models require that the computa-
tional meshes used for the different domains are conforming in the sense that the faces of the
discretization used for the bulk medium coincide with the discretization of the fractures (see
Figure 1).

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

1

https://doi.org/10.21105/joss.02291
https://github.com/openjournals/joss-reviews/issues/2291
https://git.iws.uni-stuttgart.de/tools/frackit
https://doi.org/10.5281/zenodo.4315059
http://www.diehlpk.de
https://github.com/ilyasst
https://github.com/ctdegroot
http://creativecommons.org/licenses/by/4.0/
https://www.opencascade.com/content/download-center
https://www.opencascade.com
https://www.gmsh.info/
https://doi.org/10.21105/joss.02291


Figure 1: Exemplary grids used with numerical schemes that require conformity of the bulk dis-
cretization with the fracture planes. The network shown on the left is taken from Bernd Flemisch et
al. (2018).

Information on the in-situ locations of fractures is typically sparse and difficult to determine.
As a response to this, a common approach is to study the hydraulic properties of rock in
function of the fracture network topology by means of numerical simulations performed on
stochastically generated fracture networks. Such investigations have been presented, among
many others, in Ito & Yongkoo (2003); Assteerawatt (2008); I.-H. Lee & Ni (2015); Zhang
(2015); I. Lee et al. (2019). An overview over several other works in which stochastically
generated fracture networks have been used can be found in Lei et al. (2017).
In many such studies, the researchers have used self-developed codes for the stochastic gen-
eration of the fracture networks, but unfortunately, in most cases the code is not publicly
available. Two examples for open-source software packages are Hyman et al. (2015) and
Alghalandis (2017), both of which contain functionality related to network generation and
analysis, while the former additionally provides meshing and simulation capabilities to simulate
flow and transport on the generated networks. An example for a commercial software pack-
age is FracMan (golder.com/fracman), while DFN.LAB (fractorylab.org) is a non-open-source
research code, to which access is only granted to research collaborators of the development
team.

Statement of need

In the context of simulation-based research on fractured media, stochastically generated frac-
ture networks are useful in applications where field data is sparse or unavailable, where the
impact of different network patterns is studied, or when the performance of a numerical
scheme is to be investigated on networks that exhibit certain properties. However, when the
simulations are carried out with grid-based numerical schemes, the mesh quality is of partic-
ular importance and should be taken into account already during the network generation. In
particular, small length scales and angles at intersecting geometries should be avoided, as well
as small distances due to fractures being very close to each other or to the domain boundary.
Within the above-mentioned non-commercial packages, such a feature (without the check for
small angles) is only available in Hyman et al. (2015). They describe fractures by polygons,
which are also used to approximate elliptical shapes, and the domains are restricted to hex-
ahedra. In Frackit, such checks can be performed between arbitrary, possibly non-linear
geometries, for instance, between elliptical disks and cylinder surfaces, and there is no need to
represent geometries by linear approximations. This enables users to mesh the resulting ge-
ometries with the desired resolution without artifacts from the discretization (approximation)
of the geometries themselves.

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

2

https://www.golder.com/fracman/
https://fractorylab.org/
https://doi.org/10.21105/joss.02291


Generators often work with input files for setting a large number of parameters of the network
generation, or provide a single generator class with parameter setter functions, in which the
entire network generation process occurs. While this enables new users to obtain results quickly
and with less effort, this might also limit the possibilities for customization of the generation
algorithm. In contrast to that, Frackit is structured in a modular way, allowing users to pick
the functionalities they need to assemble custom network generation algorithms. The modular
design also facilitates the incorporation of new features without having to modify existing
classes or functions. Moreover, the generated networks can be exported into a variety of output
file formats for subsequent post-processing, meshing and simulation with other software. If
desired, the geometric data produced by Frackit contains the complete fragmentation of all
geometric entities involved, i.e. the intersection geometries between all entities are computed.
Thus, this information can be directly used in the context of discrete fracture-matrix (dfm)
simulations in a conforming way as described before. For instance, the open-source simulator
DuMuX [B. Flemisch et al. (2011); Koch et al. (2020); dumux.org] contains a module
for conforming dfm simulations of single- and multi-phase flow through fractured porous
media, which has been used in several works (Andrianov & Nick, 2019; Gläser et al., 2017,
2019). It supports the Gmsh file format, and thus, Frackit can be used in a fully open-
source toolchain with Gmsh and DuMuX to generate random fracture networks, construct
computational meshes, and perform analyses on them by means of numerical simulations.

Concept

The design of Frackit is such that there is no predefined program flow, but instead, users
should implement their own applications using the provided classes and functions. This allows
for full customization of each step of the network generation. Furthermore, in the case of
available measurement data, one could skip the network generation process and use Frackit
to compute the fragmentation of the measured data and to generate CAD files for subsequent
meshing. The code is structured around three fundamental tasks involved in the generation
of random networks:

• Random generation of a new fracture entity candidate based on statistical parameters
(and possibly information on previously generated entities)

• Evaluation of geometric constraints for a new entity candidate against previously gen-
erated entities or the domain boundary

• Fragmentation of the generated raw entities and the embedding domain

This paper focusses on the first two of the above-mentioned steps, and we refer to the code
documentation for details on further available functionalities. The presented code snippets
focus on the implementation in C++, and for details on how to use Frackit from Python
we refer to the examples provided in the repository (git.iws.uni-stuttgart.de/tools/frackit).

Random generation of fracture entities

In the network generation procedure, a domain is populated with fracture entities that are
generated following user-defined statistical properties regarding their size, orientation and
spatial distribution. In Frackit, this process is termed geometry sampling and is realized in
the code in sampler classes. In the current implementation, there are three such sampler classes
available, which sample quadrilaterals, polygons and elliptical disks in three-dimensional space.
A sampler class of Frackit receives an instance of a PointSampler implementation and a
number of probability distributions that define the size and orientation of the raw entities.
PointSampler classes are used to sample the spatial distribution of the geometries inside a
domain geometry. For example, a point sampler that samples points uniformly within the unit
cube (defined in the variable domain) could be constructed like this:

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

3

https://dumux.org/
https://dumux.org/
https://www.gmsh.info/
https://www.gmsh.info/
https://dumux.org/
https://git.iws.uni-stuttgart.de/tools/frackit
https://doi.org/10.21105/joss.02291


// the type used for coordinates values
using ctype = double;

// define axis-aligned box in which to sample the centers points
using Domain = Frackit::Box<ctype>;
Domain domain(0.0, 0.0, 0.0, // xmin, ymin, zmin

1.0, 1.0, 1.0); // xmax, ymax, zmax

// let us uniformly sample points within this box
auto pointSampler = Frackit::makeUniformPointSampler(domain);

The convenience function makeUniformPointSampler() can be used for uniform sampling
over the provided domain geometry. For nun-uniform samplers, one can write

auto pointSampler = Frackit::makePointSampler<Traits>(domain);

where in the Traits class users define the type of distribution to be used for each coordinate
direction. Inside a geometry sampler class, a geometry is created by sampling a point from
the point sampler, and then constructing an instance of the desired geometry around this
point using the provided distributions for its size and orientation. For example, the Quad
rilateralSampler class expects distributions for the strike and dip angles, and for the
lengths in strike and dip direction. The following piece of code shows how an instance of the
QuadrilateralSampler class can be created, using normal distributions for all parameters
regarding orientation and uniform distributions for the lengths (we reuse the pointSampler
variable defined in the previous code snippet):

// let us use uniform distributions for the quadrilateral parameters
using NormalDistro = std::normal_distribution<ctype>;
using UniformDistro = std::uniform_real_distribution<ctype>;

// Distributions for strike/dip angles & lengths
NormalDistro strikeAngleDistro(toRadians(45.0), // mean value

toRadians(5.0)); // standard deviation
NormalDistro dipAngleDistro(toRadians(45.0), // mean value

toRadians(5.0)); // standard deviation
UniformDistro strikeLengthDistro(0.4, 0.6); // min & max length
UniformDistro dipLengthDistro(0.4, 0.6); // min & max length

// instance of the quadrilateral sampler class
using QuadSampler = Frackit::QuadrilateralSampler</*spaceDimension*/3>;
QuadSampler quadSampler(pointSampler,

strikeAngleDistro,
dipAngleDistro,
strikeLengthDistro,
dipLengthDistro);

As for point samplers, one can use different distributions by implementing a Traits class
which is then passed to the QuadrilateralSampler as template argument. The definitions
of the strike and dip angles as used within the QuadrilateralSampler class are illustrated
in Figure 2. Consider a quadrilateral whose center is the origin and which lies in the plane
defined by the two basis vectors b1 and b2. The latter lies in the x-y-plane and the strike
angle is the angle between the y-axis and b2. The dip angle describes the angle between b1

and the x-y-plane.

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

4

https://doi.org/10.21105/joss.02291


Figure 2: Illustration of the strike and dip angles involved in the random generation of quadrilaterals.
The grey plane with the structured mesh illustrates the x-y-plane.

In the code, random generation of geometries from sampler classes occurs by using the ()
operator. For example, from the quadSampler variable defined in the previous code snippet,
we obtain a random quadrilateral by writing:

// generate random quadrilateral
const auto quad = quadSampler();

Evaluation of geometric constraints

While the domain is populated with the raw fracture entities, users have the possibility to
enforce geometric constraints between them in order for the network to exhibit the desired
topological characteristics such as, for instance, fracture spacing. Furthermore, constraints can
be used to avoid very small length scales that could cause problems during mesh generation or
could lead to ill-shaped elements. In the code, constraints can be defined and evaluated using
the EntityNetworkConstraints class. These have to be fulfilled by a new fracture entity
candidate against previously accepted entities. If any of the defined constraints is violated,
the candidate may be rejected and a new one is sampled. The current implementation of
the EntityNetworkConstraints class allows users to define a minimum distance between
two entities that do not intersect. If two entities intersect, one can choose to enforce a
minimum length of the intersection curve, a minimum intersection angle and a minimum
distance between the intersection curve and the boundaries of the intersecting entities. An
illustration of such situations is shown in Figure 3.

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

5

https://doi.org/10.21105/joss.02291


Figure 3: Illustration of the geometric settings that can be avoided using geometric constraints.

Please note that internally, the EntityNetworkConstraints class uses geometry algorithms
that are part of the public interface of Frackit. Thus, one can easily develop custom
constraints and enforce additional geometric constraints. The following code snippet illustrates
how to set up an instance of the EntityNetworkConstraints class:

// Instantiate constraints class. This leaves all constraints deactivated.
Frackit::EntityNetworkConstraints<ctype> constraints;

// Set values to activate constraints
constraints.setMinDistance(0.1); // in meter
constraints.setMinIntersectingAngle(M_PI/4.0); // in radians
constraints.setMinIntersectionMagnitude(0.05); // in meter
constraints.setMinIntersectionDistance(0.05); // in meter

// define geometric tolerance to be used for intersections
constraints.setIntersectionEpsilon(1e-6);

When using the default constructor of EntityNetworkConstraints all constraints are inac-
tive, and when defining values for the different constraint types, these get activated internally.
The last line in the above code snippet shows how to define the geometric tolerance that should
be used in the intersection algorithms between entities. If no tolerance is set, a default value
is computed based on the size of the entities for which the intersection is to be determined.
For two quadrilaterals quad1 and quad2, one can then evaluate the defined constraints by
writing:

bool fulfilled = constraints.evaluate(quad1, quad2);

The function evaluate() returns true if all constraints are fulfilled. One can also check
the fulfillment of the constraints of a new candidate against an entire set of entities. Let
quad be a new candidate for a quadrilateral, and quadSet be a vector of quadrilaterals
(std::vector< Quadrilateral<ctype> >), then one can write

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

6

https://doi.org/10.21105/joss.02291


bool fulfilled = constraints.evaluate(quadSet, quad);

to evaluate the constraints between quad and all entities stored in quadSet.

Example application

In the following we want to illustrate an exemplary workflow using Frackit together with
Gmsh and DuMuX. The images are taken from the Frackit documentation (git.iws.uni-
stuttgart.de/tools/frackit) and the configurations of the geometry samplers are, apart from
small modifications, very similar to the ones used in example 3 provided in the Frackit
repository. For further details on how to set up such configurations we refer to the source
code and the documentation of that example in the repository. Note that this example is not
meant to represent a realistic fracture network, but should rather highlight the flexibility of
the code with respect to the geometries that can be used.
Let us consider a domain consisting of three solid layers of which we want to generate a
fracture network only in the center volume. The following piece of code shows how to read in
the domain geometry from a CAD file, extract its three volumes and select the middle one as
the subdomain in which to place the fracture network (this assumes knowledge of the ordering
of the volumes).

/////////////////////////////////////////////////////
// 1. Read in the domain geometry from .brep file. //
// The file name is defined in CMakeLists.txt //
/////////////////////////////////////////////////////
const auto domainShape = Frackit::OCCUtilities::readShape(BREPFILE);

// obtain the three solids contained in the file
const auto solids = Frackit::OCCUtilities::getSolids(domainShape);

// The sub-domain we want to create a network in is the center one.
const auto& networkDomain = solids[1];

// get the bounding box of the domain
const auto bBox = Frackit::OCCUtilities::getBoundingBox(networkDomain);

The last command constructs the bounding box of the center volume of our domain, which
we can then use to instantiate point sampler classes that define the spatial distribution of
the fracture entities. With these, we can construct geometry samplers as outlined above.
In this example, we define three geometry sampler instances to sample from three different
orientations of fractures, and we use quadrilaterals for two of the orientations and elliptical
disks for the third orientation. Moreover, we define different constraints that should be
fulfilled between the entities of different orientations. As mentioned above, details on how to
implement such settings can be found in example 3 in the Frackit repository.
A number of fractures is then generated for each orientation. Subsequently, the raw entities
and the three volumes of the domain are cast into an instance of the ContainedEntityNetw
ork class. This can be used to define arbitrarily many (sub-)domains, and to insert entities to
be embedded in a specific sub-domain. The ContainedEntityNetwork computes and stores
the fragments of all entities and sub-domains resulting from mutual intersection. Output
routines for instances of this class are implemented, which generate geometry files that are
ready to be meshed using designated tools such as Gmsh.
The image below illustrates the workflow chosen in this example, using Frackit to generate
a random fracture network, Gmsh to mesh the resulting geometry, and DuMuX to perform a

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

7

https://www.gmsh.info/
https://dumux.org/
https://git.iws.uni-stuttgart.de/tools/frackit
https://git.iws.uni-stuttgart.de/tools/frackit
https://git.iws.uni-stuttgart.de/tools/frackit/tree/master/appl/example3
https://git.iws.uni-stuttgart.de/tools/frackit/tree/master/appl/example3
https://www.gmsh.info/
https://www.gmsh.info/
https://dumux.org/
https://doi.org/10.21105/joss.02291


single-phase flow simulation on the resulting mesh. The bottom picture shows the pressure
distribution on the fractures and the velocities in the domain as computed with DuMuX, using
the illustrated boundary conditions.

Figure 4: Illustration of the workflow using Frackit, Gmsh and DuMuX in the exemplary application.

The source code of this example, including installation instructions, can be found at https:
//git.iws.uni-stuttgart.de/dumux-pub/glaeser2020a.

Future developments

We are planning to add fracture network characterization capabilities, such as the detection
of isolated clusters of fractures or the determination of connectivity measures. In order to do
this efficiently, we want to integrate data structures and algorithms for graphs, together with
functionalities to translate the generated fracture networks into graph representations.

Acknowledgements

We thank the German Research Foundation (Deutsche Forschungsgemeinschaft) for support-
ing this work by funding SFB 1313, Project Number 327154368.

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

8

https://dumux.org/
https://git.iws.uni-stuttgart.de/dumux-pub/glaeser2020a
https://git.iws.uni-stuttgart.de/dumux-pub/glaeser2020a
https://doi.org/10.21105/joss.02291


References

Ahmed, R., Edwards, M. G., Lamine, S., Huisman, B. A. H., & Pal, M. (2015). Control-
volume distributed multi-point flux approximation coupled with a lower-dimensional frac-
ture model. Journal of Computational Physics, 284, 462–489. https://doi.org/10.1016/j.
jcp.2014.12.047

Ahmed, Raheel, Edwards, M. G., Lamine, S., Huisman, B. A. H., & Pal, M. (2017). CVD-
MPFA full pressure support, coupled unstructured discrete fracture–matrix darcy-flux ap-
proximations. Journal of Computational Physics, 349, 265–299. https://doi.org/10.1016/
j.jcp.2017.07.041

Alghalandis, Y. F. (2017). ADFNE: Open source software for discrete fracture network en-
gineering, two and three dimensional applications. Computers & Geosciences, 102, 1–11.
https://doi.org/10.1016/j.cageo.2017.02.002

Andrianov, N., & Nick, H. M. (2019). Modeling of waterflood efficiency using outcrop-
based fractured models. Journal of Petroleum Science and Engineering, 183, 106350.
https://doi.org/10.1016/j.petrol.2019.106350

Assteerawatt, A. (2008). Flow and transport modelling of fractured aquifers based on a geo-
statistical approach [PhD thesis, Universitätsbibliothek der Universität Stuttgart]. https:
//doi.org/10.18419/opus-289

Berge, R. L., Berre, I., Keilegavlen, E., Nordbotten, J. M., & Wohlmuth, B. (2020). Finite
volume discretization for poroelastic media with fractures modeled by contact mechanics.
International Journal for Numerical Methods in Engineering, 121(4), 644–663. https:
//doi.org/10.1002/nme.6238

Brenner, K., Hennicker, J., Masson, R., & Samier, P. (2018). Hybrid-dimensional modelling of
two-phase flow through fractured porous media with enhanced matrix fracture transmission
conditions. Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2017.12.003

Flemisch, Bernd, Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Stefansson,
I., & Tatomir, A. (2018). Benchmarks for single-phase flow in fractured porous media.
Advances in Water Resources, 111, 239–258. https://doi.org/10.1016/j.advwatres.2017.
10.036

Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S.,
Nuske, P., Tatomir, A., Wolff, M., & Helmig, R. (2011). DuMux: DUNE for multi-Phase,
Component, Scale, Physics, ... Flow and transport in porous media. Advances in Water
Resources, 34, 1102–1112. https://doi.org/10.1016/j.advwatres.2011.03.007

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-d finite element mesh generator with
built-in pre- and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11), 1309–1331. https://doi.org/10.1002/nme.2579

Gläser, D., Flemisch, B., Helmig, R., & Class, H. (2019). A hybrid-dimensional dis-
crete fracture model for non-isothermal two-phase flow in fractured porous media.
GEM-International Journal on Geomathematics, 10(1), 5. https://doi.org/10.1007/
s13137-019-0116-8

Gläser, D., Helmig, R., Flemisch, B., & Class, H. (2017). A discrete fracture model for
two-phase flow in fractured porous media. Advances in Water Resources, 110, 335–348.
https://doi.org/10.1016/j.advwatres.2017.10.031

Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., & Viswanathan, H.
S. (2015). dfnWorks: A discrete fracture network framework for modeling subsurface flow
and transport. Computers & Geosciences, 84, 10–19. https://doi.org/10.1016/j.cageo.
2015.08.001

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

9

https://doi.org/10.1016/j.jcp.2014.12.047
https://doi.org/10.1016/j.jcp.2014.12.047
https://doi.org/10.1016/j.jcp.2017.07.041
https://doi.org/10.1016/j.jcp.2017.07.041
https://doi.org/10.1016/j.cageo.2017.02.002
https://doi.org/10.1016/j.petrol.2019.106350
https://doi.org/10.18419/opus-289
https://doi.org/10.18419/opus-289
https://doi.org/10.1002/nme.6238
https://doi.org/10.1002/nme.6238
https://doi.org/10.1016/j.jcp.2017.12.003
https://doi.org/10.1016/j.advwatres.2017.10.036
https://doi.org/10.1016/j.advwatres.2017.10.036
https://doi.org/10.1016/j.advwatres.2011.03.007
https://doi.org/10.1002/nme.2579
https://doi.org/10.1007/s13137-019-0116-8
https://doi.org/10.1007/s13137-019-0116-8
https://doi.org/10.1016/j.advwatres.2017.10.031
https://doi.org/10.1016/j.cageo.2015.08.001
https://doi.org/10.1016/j.cageo.2015.08.001
https://doi.org/10.21105/joss.02291


Ito, K., & Yongkoo, S. (2003). A 3-dimensional discrete fracture network generator to examine
fracture-matrix interaction using TOUGH2. Lawrence Berkeley National Lab.(LBNL),
Berkeley, CA (United States).

Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., & Berre,
I. (2020). PorePy: An open-source software for simulation of multiphysics processes in
fractured porous media. Computational Geosciences, 1–23. https://doi.org/10.1007/
s10596-020-10002-5

Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S.,
Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J.,
Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020).
DuMux 3 - an open-source simulator for solving flow and transport problems in porous
media with a focus on model coupling. Computers & Mathematics with Applications.
https://doi.org/10.1016/j.camwa.2020.02.012

Köppel, M., Martin, V., & Roberts, J. E. (2019). A stabilized lagrange multiplier finite-
element method for flow in porous media with fractures. GEM-International Journal on
Geomathematics, 10(1), 7. https://doi.org/10.1007/s13137-019-0117-7

Lee, I.-H., & Ni, C.-F. (2015). Fracture-based modeling of complex flow and CO2 migration
in three-dimensional fractured rocks. Computers & Geosciences, 81, 64–77. https://doi.
org/10.1016/j.cageo.2015.04.012

Lee, I., Ni, C.-F., Lin, F.-P., Lin, C.-P., Ke, C.-C., & others. (2019). Stochastic modeling of
flow and conservative transport in three-dimensional discrete fracture networks. Hydrology
and Earth System Sciences, 23(1), 19–34. https://doi.org/10.5194/hess-23-19-2019

Lei, Q., Latham, J.-P., & Tsang, C.-F. (2017). The use of discrete fracture networks for mod-
elling coupled geomechanical and hydrological behaviour of fractured rocks. Computers
and Geotechnics, 85, 151–176. https://doi.org/10.1016/j.compgeo.2016.12.024

McFarland, R. D., & Murphy, H. (1976). Extracting energy from hydraulically-fractured
geothermal reservoirs. Los Alamos Scientific Lab., N. Mex.(USA).

Nordbotten, J. M., Boon, W. M., Fumagalli, A., & Keilegavlen, E. (2019). Unified approach
to discretization of flow in fractured porous media. Computational Geosciences, 23(2),
225–237. https://doi.org/10.1007/s10596-018-9778-9

Qian, J., Zhou, X., Zhan, H., Dong, H., & Ma, L. (2014). Numerical simulation and evalu-
ation of groundwater resources in a fractured chalk aquifer: A case study in zinder well
field, niger. Environmental Earth Sciences, 72(8), 3053–3065. https://doi.org/10.1007/
s12665-014-3211-z

Schädle, P., Zulian, P., Vogler, D., Bhopalam, S. R., Nestola, M. G. C., Ebigbo, A., Krause,
R., & Saar, M. O. (2019). 3D non-conforming mesh model for flow in fractured porous
media using lagrange multipliers. Computers & Geosciences, 132, 42–55. https://doi.
org/10.1016/j.cageo.2019.06.014

Shaik, A. R., Rahman, S. S., Tran, N. H., & Tran, T. (2011). Numerical simulation of fluid-
rock coupling heat transfer in naturally fractured geothermal system. Applied Thermal
Engineering, 31(10), 1600–1606. https://doi.org/10.1016/j.applthermaleng.2011.01.038

Sovacool, B. K. (2014). Cornucopia or curse? Reviewing the costs and benefits of shale gas
hydraulic fracturing (fracking). Renewable and Sustainable Energy Reviews, 37, 249–264.
https://doi.org/10.1016/j.rser.2014.04.068

Torabi, F., Firouz, A. Q., Kavousi, A., & Asghari, K. (2012). Comparative evaluation of
immiscible, near miscible and miscible CO2 huff-n-puff to enhance oil recovery from a
single matrix–fracture system (experimental and simulation studies). Fuel, 93, 443–453.
https://doi.org/10.1016/j.fuel.2011.08.037

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

10

https://doi.org/10.1007/s10596-020-10002-5
https://doi.org/10.1007/s10596-020-10002-5
https://doi.org/10.1016/j.camwa.2020.02.012
https://doi.org/10.1007/s13137-019-0117-7
https://doi.org/10.1016/j.cageo.2015.04.012
https://doi.org/10.1016/j.cageo.2015.04.012
https://doi.org/10.5194/hess-23-19-2019
https://doi.org/10.1016/j.compgeo.2016.12.024
https://doi.org/10.1007/s10596-018-9778-9
https://doi.org/10.1007/s12665-014-3211-z
https://doi.org/10.1007/s12665-014-3211-z
https://doi.org/10.1016/j.cageo.2019.06.014
https://doi.org/10.1016/j.cageo.2019.06.014
https://doi.org/10.1016/j.applthermaleng.2011.01.038
https://doi.org/10.1016/j.rser.2014.04.068
https://doi.org/10.1016/j.fuel.2011.08.037
https://doi.org/10.21105/joss.02291


Zhang, Q.-H. (2015). Finite element generation of arbitrary 3-d fracture networks for flow
analysis in complicated discrete fracture networks. Journal of Hydrology, 529, 890–908.
https://doi.org/10.1016/j.jhydrol.2015.08.065

Gläser et al., (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56),
2291. https://doi.org/10.21105/joss.02291

11

https://doi.org/10.1016/j.jhydrol.2015.08.065
https://doi.org/10.21105/joss.02291

	Summary
	Introduction
	Statement of need
	Concept
	Random generation of fracture entities
	Evaluation of geometric constraints

	Example application
	Future developments
	Acknowledgements
	References

