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pyrolite is a Python package for working with multivariate geochemical data, with a par-
ticular focus on rock and mineral chemistry. The project aims to contribute to more robust,
efficient and reproducible data-driven geochemical research.

Features

pyrolite provides tools for processing, transforming and visualising geochemical data from
common tabular formats. The package includes methods to recalculate and rescale whole-rock
and mineral compositions, perform compositional statistics and create appropriate visualisa-
tions and also includes numerous auxiliary utilities (e.g. a geological timescale). In addition,
these tools provide a foundation for preparing data for subsequent machine learning applica-
tions using scikit-learn (Pedregosa et al., 2011).
Geochemical data are compositional (i.e. sum to 100%), and as such require non-standard
statistical treatment (Aitchison, 1984). While challenges of compositional data have long been
acknowledged (e.g. Pearson, 1897), appropriate measures to account for this have thus far seen
limited uptake by the geochemistry community. The submodule pyrolite.comp provides
access to methods for transforming compositional data, facilitating more robust statistical
practices.
A variety of standard diagram methods (e.g. ternary, spider, and data-density diagrams; see
Figs. 1, 2), templated diagrams (e.g. the Total-Alkali Silica diagram , Le Bas, Le Maitre, &
Woolley, 1992; and Pearce diagrams, Pearce, 2008) and novel geochemical visualisation meth-
ods are available. The need to visualise geochemical data (typically graphically represented
as bivariate and ternary diagrams) has historically limited the use of multivariate measures
in geochemical research. Together with the methods for compositional data and utilities for
dimensional reduction via scikit-learn, pyrolite eases some of these difficulties and en-
courages users to make the most of their data dimensionality. Further, the data-density and
histogram-based methods are particularly useful for working with steadily growing volumes of
geochemical data, as they reduce the impact of ‘overplotting’.
Reference datasets of compositional reservoirs (e.g. CI-Chondrite, Bulk Silicate Earth, Mid-
Ocean Ridge Basalt) and a number of rock-forming mineral endmembers are installed with
pyrolite. The first of these enables normalisation of composition to investigate relative geo-
chemical patterns, and the second facilitates mineral endmember recalculation and normative
calculations.
pyrolite also includes some specific methods to model geochemical patterns, such as the
lattice strain model for trace element partitioning of Blundy & Wood (2003), the Sulfur
Content at Sulfur Saturation (SCSS) model of Li & Ripley (2009), and orthogonal polynomial
decomposition for parameterising Rare Earth Element patterns of O’Neill (2016).
Extensions beyond the core functionality are also being developed, including pyrolite-melts
util which provides utilities for working with alphaMELTS and it’s outputs (Smith & Asimow,

Williams et al., (2020). pyrolite: Python for geochemistry. Journal of Open Source Software, 5(50), 2314. https://doi.org/10.21105/joss.02314 1

https://doi.org/10.21105/joss.02314
https://github.com/openjournals/joss-reviews/issues/2314
https://github.com/morganjwilliams/pyrolite
https://doi.org/10.5281/zenodo.3877690
http://arfon.org/
https://github.com/arfon
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02314


2005), and is targeted towards performing large numbers of related melting and fractionation
experiments.

Figure 1: Example of different bivariate and ternary diagrams, highlighting the ability to visualise
data distribution.

API

The pyrolite API follows and builds upon a number of existing packages, and where relevant
exposes their API, particularly for matplotlib (Hunter, 2007) and pandas (McKinney, 2010).
In particular, the API makes use of dataframe accessor classes provided by pandas to add
additional dataframe ‘namespaces’ (e.g. accessing the pyrolite spiderplot method via df.
pyroplot.spider()). This approach allows pyrolite to use more familiar syntax, helping
geochemists new to Python to hit the ground running, and encouraging development of
transferable knowledge and skills.
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Figure 2: Standard and density-mode spider diagrams generated from a synthetic dataset centred
around an Enriched- Mid-Ocean Ridge Basalt composition (Sun & McDonough, 1989), normalised to
Primitive Mantle (Palme & O’Neill, 2014). Elements are ordered based on a proxy for trace element
‘incompatibility’ during mantle melting (e.g. as used by Hofmann, 2014).

Conventions

Tidy Geochemical Tables
Being based on pandas, pyrolite operations are based on tabular structured data in
dataframes, where each geochemical variable or component is a column, and each observation
is a row (consistent with “tidy data” principles, Wickham, 2014). pyrolite additionally
assumes that geochemical components are identifiable with either element- or oxide-based
column names (which contain only one element excluding oxygen, e.g. Ca, MgO, Al2O3, but
not Ca3Al3(SiO4)3 or Ti_ppm).
Open to Oxygen
Geochemical calculations in pyrolite conserve mass for all elements excluding oxygen (which
for most geological scenarios is typically in abundance). This convention is equivalent to
assuming that the system is open to oxygen, and saves accounting for a ‘free oxygen’ phase
(which would not appear in a typical subsurface environment).

Community

pyrolite aims to be designed, developed and supported by the geochemistry community.
Community contributions are encouraged, and will help make pyrolite a broadly useful
toolkit and resource (for both research and education purposes). In addition to developing
a library of commonly used methods and diagram templates, these contributions will con-
tribute to enabling better research practices, and potentially even establishing standards for
geochemical data processing and analysis within the user community.
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