
dantro: a Python package for handling, transforming,
and visualizing hierarchically structured data
Yunus Sevinchan 1, Benjamin Herdeanu 1,2, and Jeremias Traub 1

1 Institute of Environmental Physics, Heidelberg University, Germany 2 Heidelberg Graduate School for
Physics, Heidelberg University, Germany

DOI: 10.21105/joss.02316

Software
• Review
• Repository
• Archive

Editor: Lorena Mesa
Reviewers:

• @Chilipp
• @mdpiper

Submitted: 20 May 2020
Published: 23 August 2020

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Researchers, especially those relying on computer simulations, frequently generate and analyze
large amounts of data. With recent increases in computational capacity, the demand to
efficiently and reliably process the generated data is growing accordingly. To address these needs,
one powerful approach is to streamline the data handling, transformation, and visualization
procedures into a data processing pipeline. Akin to the Continuous Integration pipelines widely
used in modern software engineering, a data processing pipeline implements an automated
sequence of predefined, yet dynamically configurable operations. Ultimately, using such a data
processing pipeline can greatly improve the efficiency, reliability, and reproducibility of the
scientific workflow.

However, we observed two challenges that impede the implementation and use of data processing
pipelines in modeling-based research. First, data is often hierarchically structured, typically
because it represents some underlying modularization in the investigated model. Second, the
data may be semantically heterogeneous: this means that it may include many different data
structures (e.g., numerical array-like data of different sizes, configuration files, metadata),
or data that becomes meaningful only after processing. These properties make it difficult
to handle data uniformly, thus greatly complicating the automatization efforts needed when
constructing a processing pipeline.

dantro – from data and dentro (Greek for tree) – is a Python package that overcomes these
problems; it does so by providing a uniform interface that handles hierarchically structured and
semantically heterogeneous data. dantro is built around three main features, which constitute
the stages of the data processing pipeline:

• handling: loading heterogeneous data into a tree-like data structure and providing a
uniform interface for it

• transformation: efficiently performing arbitrary operations on the data
• visualization: creating a visual representation of the processed data

While plenty of established Python packages exist for each of these stages (e.g., numpy (van
der Walt et al., 2011), xarray (Hoyer & Hamman, 2017), h5py (Collette, 2013), dask (Dask
Development Team, 2016; Rocklin, 2015), and matplotlib (Hunter, 2007)), coupling them
into a processing pipeline can be difficult, especially when high generality and flexibility is
desired. With dantro’s uniform data handling interface, the interoperability between these
packages is simplified, while additionally allowing pipeline-specific specializations (see details
section for more information). Furthermore, dantro is designed for a configuration-based
specification of all operations via YAML configuration files (Ben-Kiki et al., 2009). Thus,
once the pipeline is set up, it can be controlled entirely via these configuration files and
without requiring any code changes. Taken together, the unique feature of dantro is that it
conveniently combines the capabilities of many packages and defines a data processing pipeline
without having to take care of interfacing between the many involved packages.

Sevinchan et al. (2020). dantro: a Python package for handling, transforming, and visualizing hierarchically structured data. Journal of Open
Source Software, 5(52), 2316. https://doi.org/10.21105/joss.02316.

1

https://orcid.org/0000-0003-3858-0904
https://orcid.org/0000-0001-6343-3004
https://orcid.org/0000-0001-8911-6365
https://doi.org/10.21105/joss.02316
https://github.com/openjournals/joss-reviews/issues/2316
https://gitlab.com/utopia-project/dantro
https://doi.org/10.5281/zenodo.3986628
http://www.lorenamesa.com
https://orcid.org/0000-0001-8991-4826
https://github.com/Chilipp
https://github.com/mdpiper
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02316


Importantly, dantro is meant to be integrated into projects. While this integration process
creates a one-time overhead during the setup of the pipeline, we believe that it offers more
generality and supplies a wider feature set compared to any ready-to-use pipeline. To achieve
a deep integration, the data structures provided by dantro define a shared interface and offer
many possibilities to specialize and extend them to the requirements and data structures of
the project it is integrated in. Effectively, the processing pipeline becomes a part of the project,
growing and developing alongside it.

dantro was developed as part of the Utopia project (Riedel et al., 2020; Sevinchan et al.,
2020), a modeling framework for complex and evolving systems. Within this project, dantro
is used for automated, configuration-based data processing and plotting. While dantro was
devised with simulation-based applications in mind, it is general enough to be used in all
domains that require the handling, transformation, and visualization of data, also offering use
cases for statistical or exploratory data analysis.

The dantro package is released under the LGPLv3+ and is available from the Python Pack-
age Index (PyPI) at pypi.org/project/dantro and from conda-forge. Its documentation,
including integration instructions and examples, can be found at dantro.readthedocs.io.

Details
Corresponding to the three stages comprising a data processing pipeline, dantro is built upon
three main modules: the data tree, a data transformation framework, and a plotting framework.

The Data Tree

The data tree is a representation of hierarchically structured data. Therein, dantro employs
data groups and data containers, which constitute the branching points and the leaves of the
tree, respectively. Abstract base classes are used to define the shared interface for all data
types used in the tree.

Furthermore, dantro provides a set of mixin classes, which can be used to specialize a container
or group for the data they are expected to hold. As an example, a group might hold containers
that represent sequential simulation output; the group could then be specialized to represent
a time series, offering the corresponding data selection capabilities. Another example is the
GraphGroup, which generates a networkx (Hagberg et al., 2008) graph object from the data
available in the group. For numerical data, containers are available that specialize in holding
numpy arrays or xarray data structures; these containers behave in the same way as the
underlying arrays while additionally adhering to the dantro interface. As long as groups and
containers concur to the interface of the data tree, they can be customized in any way that
suits the data structures of the project dantro is used in.

At the root of the data tree is the DataManager, which is associated with a data directory; it
takes care of loading data into the tree, forming a bridge between the data in memory and that
inside the directory. The DataManager can be extended with a set of readily-available loaders
for different file formats. For loading HDF5 files (The HDF Group, 1997), which are widely
used to handle high volumes of hierarchically organized data, it uses h5py to load the file into
the data tree while retaining its internal structure. dantro furthermore provides a data proxy
construct, which acts as a placeholder for any form of data, effectively allowing it to delay the
loading of the data until it becomes necessary. For numerical data, dantro combines this with
the capabilities of the dask package to perform operations on data that cannot be loaded into
memory at the same time.

The Data Transformation Framework

The data transformation framework relies on the uniform interface of the data tree, which
allows it to perform arbitrary transformations on the data. This includes but is not limited

Sevinchan et al. (2020). dantro: a Python package for handling, transforming, and visualizing hierarchically structured data. Journal of Open
Source Software, 5(52), 2316. https://doi.org/10.21105/joss.02316.

2

https://www.gnu.org/licenses/lgpl-3.0.html
https://pypi.org/project/dantro/
https://anaconda.org/conda-forge/dantro
https://dantro.readthedocs.io/
https://doi.org/10.21105/joss.02316


to aggregating statistical measures, filtering data, or performing calculations using different
entities from the data tree.

To achieve this, a pipeline user specifies a directed acyclic graph (DAG) of operations that are
to be carried out on the data. These operations can be chosen from a set of predefined or
user-specified operations, but in principle include all operations available in Python. Moreover,
transformations can involve arbitrary objects in the data tree and file-based caching of operations
can be used to alleviate repeating long computations, thus speeding up the data transformation
procedure. Following dantro’s configuration-based approach, specification of the DAG and its
arguments can happen entirely via YAML configuration files.

The Plotting Framework

The visualization of the potentially transformed data concludes the data processing pipeline.
The dantro plotting framework consists of two main data structures: the PlotManager and
the plot creators.

The PlotManager implements a configuration-based interface for defining which plots are to be
created and further consolidates all overarching features. For example, the data tree is made
available, the DAG framework is invoked, or plot configuration inheritance and composition
are managed. Furthermore, using the paramspace package (Sevinchan, 2020), one can easily
declare plot configurations with varying parameters, subsequently resulting in multiple output
files.

Given the configuration and the data, the individual plot creators then focus on the actual
visualization using a plotting backend. Currently, dantro provides plot creators that are
based on matplotlib. Plotting procedures are defined as separate functions that use the
familiar matplotlib interface. On top of that, these creators allow the user to specify plot
aesthetics (e.g., style sheet, RC parameters) via the plot configuration and simplify the
creation of animations. For instance, to generically represent high-dimensional data, dantro
integrates xarray’s plotting capabilities and uses the animation feature to make one additional
visualization dimension available. Aside from the integrated plotting functions, custom plotting
functions can be easily defined and benefit from the same infrastructure.

As part of a pipeline, additional plot creators can be defined that use a different plotting
backend or focus on some specific visualization aspects. As an example, one intriguing addition
to the set of plot creators would be to utilize the altair framework (VanderPlas et al., 2018)
where plots can be specified via the Vega-Lite visualization grammar (Satyanarayan et al.,
2017). Such a declarative plotting approach would be well-suited for the visualization stage
of a dantro-based data processing pipeline, further simplifying and generalizing the bridge
between transformed data and its visualization.

Acknowledgments
We would like to thank Unai Fischer Abaigar, Daniel Lake, and Julian Weninger for their
contributions to dantro. We thank Maria Blöchl for comments on an earlier version of this
manuscript. We are grateful to Kurt Roth for feedback on the manuscript and his support
during the development of this project.

References
Ben-Kiki, O., Evans, C., & Net, I. döt. (2009). YAML Ain’t Markup Language, v1.2.

https://yaml.org/spec/1.2/spec.html

Collette, A. (2013). Python and HDF5. O’Reilly Media.

Dask Development Team. (2016). Dask: Library for dynamic task scheduling. https://dask.org

Sevinchan et al. (2020). dantro: a Python package for handling, transforming, and visualizing hierarchically structured data. Journal of Open
Source Software, 5(52), 2316. https://doi.org/10.21105/joss.02316.

3

https://yaml.org/spec/1.2/spec.html
https://dask.org
https://doi.org/10.21105/joss.02316


Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics,
and function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings
of the 7th python in science conference (pp. 11–15).

Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled arrays and datasets in Python. Journal
of Open Research Software, 5(1). https://doi.org/10.5334/jors.148

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Riedel, L., Herdeanu, B., Mack, H., Sevinchan, Y., & Weninger, J. (2020). Utopia: A
comprehensive and collaborative modeling framework for complex and evolving systems.
Journal of Open Source Software. https://doi.org/10.21105/joss.02165

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task scheduling.
In K. Huff & J. Bergstra (Eds.), Proceedings of the 14th python in science conference (pp.
130–136). https://doi.org/10.25080/majora-7b98e3ed-013

Satyanarayan, A., Moritz, D., Wongsuphasawat, K., & Heer, J. (2017). Vega-lite: A grammar
of interactive graphics. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis).
https://doi.org/10.1109/TVCG.2016.2599030

Sevinchan, Y. (2020). Paramspace v2.4.1 (Version v2.4.1) [Computer software]. Zenodo.
https://doi.org/10.5281/zenodo.3826470

Sevinchan, Y., Herdeanu, B., Mack, H., Riedel, L., & Roth, K. (2020). Boosting group-level
synergies by using a shared modeling framework. In Lecture notes in computer science (pp.
442–456). Springer International Publishing. https://doi.org/10.1007/978-3-030-50436-6_
32

The HDF Group. (1997). Hierarchical data format version 5. http://www.hdfgroup.org/HDF5

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure
for efficient numerical computation. Computing in Science Engineering, 13(2), 22–30.
https://doi.org/10.1109/MCSE.2011.37

VanderPlas, J., Granger, B., Heer, J., Moritz, D., Wongsuphasawat, K., Satyanarayan, A., Lees,
E., Timofeev, I., Welsh, B., & Sievert, S. (2018). Altair: Interactive statistical visualizations
for python. Journal of Open Source Software. https://doi.org/10.21105/joss.01057

Sevinchan et al. (2020). dantro: a Python package for handling, transforming, and visualizing hierarchically structured data. Journal of Open
Source Software, 5(52), 2316. https://doi.org/10.21105/joss.02316.

4

https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.02165
https://doi.org/10.25080/majora-7b98e3ed-013
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.5281/zenodo.3826470
https://doi.org/10.1007/978-3-030-50436-6_32
https://doi.org/10.1007/978-3-030-50436-6_32
http://www.hdfgroup.org/HDF5
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.02316

	Summary
	Details
	The Data Tree
	The Data Transformation Framework
	The Plotting Framework

	Acknowledgments
	References

