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Summary

PyStokes is a Python library for studying phoretic and hydrodynamic interactions between
spherical particles when these interactions can be described by the solutions of, respectively,
the Laplace and Stokes equations. The library has been specifically designed for studying
these interactions in suspensions of active particles, which are distinguished by their ability to
produce flow, and thus motion, in the absence of external forces or torques. Such particles are
endowed with a mechanism to produce hydrodynamic flow in a thin interfacial layer, which
may be due to the motion of cilia, as in microorganisms (Brennen & Winet, 1977) or osmotic
flows of various kinds in response to spontaneously generated gradients of phoretic fields
(Ebbens & Howse, 2010). The latter, often called autophoresis, is a generalisation of well-
known phoretic phenomena including, inter alia, electrophoresis (electric field), diffusiophoresis
(chemical field) and thermophoresis (temperature field) that occur in response to externally
imposed gradients of phoretic fields (Anderson, 1989).

Figure 1: Input and output structure of PyStokes to determine the hydrodynamic and phoretic
interactions between active particles in a three-dimensional domain V . The equations are coupled by
active boundary conditions on the surface Si of the particles. Particle indices are i = 1, . . . , N and
harmonic indices are l = 1, 2, . . . and σ = s, a, t (see text).

Hydrodynamic and phoretic interactions between active particles in a viscous fluid are central
to the understanding of their collective dynamics. Under experimentally relevant conditions,
the motion of the fluid is governed by the Stokes equation and that of the phoretic field, if one
is present, by the Laplace equation. The “activity” appears in these equations as boundary
conditions on the particle surfaces that prescribe the slip velocity in the Stokes equation and
flux of the phoretic field in the Laplace equation (see Figure 1). The slip velocity and the
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phoretic flux are related by a linear constitutive law that can be derived from a detailed
analysis of the boundary layer physics (Anderson, 1989). The Stokes and Laplace equations
are coupled by this linear constitutive law only at the particle boundaries. The linearity of
the governing equations and the coupling boundary conditions allows for a formally exact
solution of the problem of determining the force per unit area on the particle surfaces. This
formally exact solution can be approximated to any desired degree of accuracy by a truncated
series expansion in a complete basis of functions on the particle boundaries. This, in turn,
leads to an efficient and accurate numerical method for computing hydrodynamic and phoretic
interactions between active particles.
In addition to the joint computation of phoretic and hydrodynamic interactions, the PyStokes
library can be used to compute the hydrodynamically interacting motion of squirming particles
where the slip is specified independently of a phoretic field, or the dynamics of passive sus-
pensions where the slip vanishes and forces and torques are prescribed. The PyStokes library
can also compute hydrodynamically correlated Brownian motion, and thus, allows the study
of the interplay between passive, active, and Brownian contributions to motion.
The PyStokes library has been used to model suspensions of microorganisms (Bolitho, Singh,
& Adhikari, 2020; Singh & Adhikari, 2016), synthetic autophoretic particles (Singh & Adhikari,
2016; R. Singh et al., 2019) and self-propelling droplets (Thutupalli, Geyer, Singh, Adhikari,
& Stone, 2018). Our software implementation uses a polyglot programming approach that
combines the readability of Python with the speed of Cython and retains the advantages of a
high-level, dynamically typed, interpreted language without sacrificing performance.

Methods

Our method relies on the reduction of a linear elliptic partial differential equation (PDE) to
systems of linear algebraic equations using the following steps:

Figure 2: Key mathematical steps underpinning the PyStokes codebase.

The first step is the representation of the solution of an elliptic PDE in a three-dimensional
volume V as an integral over the boundary of the surface S (Cheng & Cheng, 2005; Ladyzhen-
skaia, 1969; Muldowney & Higdon, 1995; Odqvist, 1930; Pozrikidis, 1992; Singh, Ghose, &
Adhikari, 2015; Youngren & Acrivos, 1975; Zick & Homsy, 1982). For the Laplace equation,
this is the classical theorem of Green (Jackson, 1962); for the Stokes equation, it is the gen-
eralization obtained by Lorentz (Ladyzhenskaia, 1969; Lorentz, 1896; Odqvist, 1930). The
integral representation leads to a linear integral equation that provides a functional relation be-
tween the field and its flux on S. Thus, if the surface flux in the Laplace equation is specified,
the surface concentration is determined by the solution of the Laplace boundary integral equa-
tion. Similarly, if the surface velocity in the Stokes equation is specified, the surface traction
is determined by the solution of the Stokes boundary integral equation. This transformation
of the governing PDE is the most direct way of relating boundary conditions (surface flux,
slip velocities) to boundary values (surface concentration, surface traction). It reduces the
dimensionality of the problem from a three-dimensional one in V to a two-dimensional one
on S. The second step is the spectral expansion of the field and its flux in terms of global
basis functions on S. We use the geometry-adapted tensorial spherical harmonics, which pro-
vide a unified way of expanding both scalar and vector quantities on the surface of a sphere.
These functions are both complete and orthogonal and provide representations of the three-
dimensional rotation group (Hess, 2015). Thus, symmetries of the active boundary conditions
can be represented straightforwardly and transparently. The third step is the discretization
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of the integral equation using the procedure of Ritz and Galerkin (Boyd, 2000; Finlayson &
Scriven, 1966), which reduces it to an infinite-dimensional self-adjoint linear system in the
expansion coefficients. This exploits the orthogonality of the basis functions on the sphere.
The matrix elements of the linear system can be evaluated analytically in terms of the Green’s
functions of the respective elliptic equations. The fourth step is the truncation of the infinite-
dimensional linear system to a finite-dimensional one that can be solved by standard methods
of linear algebra adapted for self-adjoint systems (Saad, 2003). The analytical solution can
be obtained by Jacobi iteration, which is equivalent to Smoluchowski’s method of reflection.
Numerical solutions can be obtained by the conjugate gradient method, at a cost quadratic
in the number of unknowns. From this solution, we can reconstruct the field and the flux on
the boundary, use these to determine the fields in the bulk, and from there, compute derived
quantities.
The above steps have been elaborated in several papers (Singh & Adhikari, 2016, 2017, 2018;
Singh et al., 2019, 2015) and we do not repeat them in detail here. Briefly, the expansion
coefficients of the slip can be either specified or obtained as a solution of Laplace equation.
Once the coefficients are determined, the following equation are solved numerically to obtain
velocity and angular velocity of the i-th particle

Vi = µTT
ij · FP

j + µTR
ij ·TP

j +
∞∑

lσ=1s

π
(T, lσ)
ij ·V(lσ)

j , µαβ
ij : mobility matrices,

Ωi = µRT
ij · FP

j + µRR
ij ·TP

j︸ ︷︷ ︸
Passive

+

∞∑
lσ=1s

π
(R, lσ)
ij ·V(lσ)

j︸ ︷︷ ︸
Active

, π
(α,lσ)
ij : propulsion tensors.

In the above, α, β = (T,R), repeated particle index j is summed, and

FP
i : body force, TP

i : body torque, V
(lσ)
i : lσ-th expansion coefficients of active slip.

Thus, hydrodynamic interactions between particles with no-slip boundary conditions can be
computed entirely in terms of mobility matrices, as implemented in existing numerical libraries
(Hinsen, 1995; Ichiki, 2002), to study suspensions of passive particles. The active contributions
due to the slip boundary condition is given in terms of propulsion tensors (Singh et al., 2015).
To the best of our knowledge, PyStokes is the only numerical implementation of propulsion
tensors to model suspensions of active particles.
To summarize, the principal features that set our method apart are (a) the restriction of inde-
pendent fluid and phoretic degrees of freedom to the particle boundaries (b) the freedom from
grids, both in the bulk of the fluid and on the particle boundaries and (c) the ability to handle,
within the same numerical framework, a wide variety of geometries and boundary conditions,
including unbounded volumes, volumes bounded by plane walls or interfaces, periodic volumes
and, indeed, any geometry-boundary condition combination for which the Green’s functions
of the governing equations are simply evaluated.
The PyStokes library can be instantiated in the following way to

• obtain phoretic field created by active particles at a given set of points

phoreticField = pystokes.phoreticUnbounded.Field(radius=1, particles=1,
phoreticConstant=1, gridpoints=4096)

• evaluate fluid flow created by active particles at a given set of points

Flow = pystokes.unbounded.Flow(radius=1, particles=1, viscosity=1,
gridpoints=4096)
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• determine phoretic field at surface of active particles

phoresis = pystokes.phoreticUnbounded.Phoresis(radius=1, particles=1024,
phoreticConstant=1)

• compute rigid body motion of hydrodynamically interacting particles

Rbm = pystokes.unbounded.Rbm(radius=1, particles=1024, viscosity=1)

The above instantiation can then be used to compute Flow and Rbm due to body forces, body
torques, and each irreducible mode of the surface slip in various geometries of Stokes flow, by
replacing unbounded with wallBounded, periodic, etc. pystokes.forceFields contains
an implementation of force fields commonly used in colloidal systems for completeness. The
arXiv preprint (Singh & Adhikari, 2019) of this article contains more detailed documentation
and examples.

Acknowledgements

We thank A Banerjee, ME Cates, S Date, A Donev, E Eiser, D Frenkel, S Ghose, R Goldstein,
J Hinch, A Laskar, AJC Ladd, RK Manna, I Pagonabarraga, DJ Pine, T Pradeep, R Simon,
HA Stone, G Subramanian, PB Sunil Kumar, and S Thutupalli for useful discussions; Rajeev
Singh and Abhrajit Laskar for code contributions in the initial stages of development. This
work was funded in parts by the European Research Council under the EU’s Horizon 2020
Program, Grant No. 740269; a Royal Society-SERB Newton International Fellowship to RS;
and an Early Career Grant to RA from the Isaac Newton Trust.

References

Anderson, J. L. (1989). Colloid transport by interfacial forces. Annu. Rev. Fluid Mech.,
21(1), 61–99. doi:10.1146/annurev.fl.21.010189.000425

Bolitho, A., Singh, R., & Adhikari, R. (2020). Periodic orbits of active particles induced by
hydrodynamic monopoles. Phys. Rev. Lett., 124(8), 088003. doi:10.1103/PhysRevLett.
124.088003

Boyd, J. P. (2000). Chebyshev and fourier spectral methods. Dover. Retrieved from https:
//store.doverpublications.com/0486411834.html

Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annu.
Rev. Fluid Mech., 9(1), 339–398. doi:10.1146/annurev.fl.09.010177.002011

Cheng, A. H.-D., & Cheng, D. T. (2005). Heritage and early history of the boundary element
method. Eng. Anal. Bound. Elem., 29(3), 268–302. doi:10.1016/j.enganabound.2004.
12.001

Ebbens, S. J., & Howse, J. R. (2010). In pursuit of propulsion at the nanoscale. Soft Matter,
6(4), 726–738. doi:10.1039/B918598D

Finlayson, B. A., & Scriven, L. E. (1966). The method of weighted residuals - a review. Appl.
Mech. Rev, 19(9), 735–748. Retrieved from http://faculty.washington.edu/finlayso/
MWR-AReview.pdf

Hess, S. (2015). Tensors for physics. Springer. doi:10.1007/978-3-319-12787-3

Singh et al., (2020). PyStokes: phoresis and Stokesian hydrodynamics in Python. Journal of Open Source Software, 5(50), 2318. https:
//doi.org/10.21105/joss.02318

4

https://doi.org/10.1146/annurev.fl.21.010189.000425
https://doi.org/10.1103/PhysRevLett.124.088003
https://doi.org/10.1103/PhysRevLett.124.088003
https://store.doverpublications.com/0486411834.html
https://store.doverpublications.com/0486411834.html
https://doi.org/10.1146/annurev.fl.09.010177.002011
https://doi.org/10.1016/j.enganabound.2004.12.001
https://doi.org/10.1016/j.enganabound.2004.12.001
https://doi.org/10.1039/B918598D
http://faculty.washington.edu/finlayso/MWR-AReview.pdf
http://faculty.washington.edu/finlayso/MWR-AReview.pdf
https://doi.org/10.1007/978-3-319-12787-3
https://doi.org/10.21105/joss.02318
https://doi.org/10.21105/joss.02318


Hinsen, K. (1995). HYDROLIB: A library for the evaluation of hydrodynamic in-
teractions in colloidal suspensions. Comp. Phys. Commun., 88(2), 327–340.
doi:10.1016/0010-4655(95)00029-F

Ichiki, K. (2002). libstokes. GitHub repository. https://github.com/kichiki/libstokes; GitHub.
Jackson, J. D. (1962). Classical electrodynamics. Wiley. Retrieved from http://as.wiley.

com/WileyCDA/WileyTitle/productCd-047130932X.html
Ladyzhenskaia, O. A. (1969). The mathematical theory of viscous incompressible flow. Math-

ematics and its applications. Gordon; Breach. Retrieved from https://books.google.co.in/
books?id=qVXvAAAAMAAJ

Lorentz, H. A. (1896). A general theorem concerning the motion of a viscous fluid and a few
consequences derived from it. Versl. Konigl. Akad. Wetensch. Amst, 5, 168–175.

Muldowney, G. P., & Higdon, J. J. L. (1995). A spectral boundary element approach to three-
dimensional Stokes flow. J. Fluid Mech., 298, 167–192. doi:10.1017/S0022112095003260

Odqvist, F. K. G. (1930). Über die Bandwertaufgaben der Hydrodynamik zäher Flüssig-keiten.
Mathematische Zeitschrift, 32, 329–375. doi:10.1007/BF01194638

Pozrikidis, C. (1992). Boundary integral and singularity methods for linearized viscous flow.
Cambridge University Press. doi:10.1017/CBO9780511624124

Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM. doi:10.1137/1.
9780898718003.bm

Singh, R., & Adhikari, R. (2016). Universal hydrodynamic mechanisms for crystallization in ac-
tive colloidal suspensions. Phys. Rev. Lett., 117(22), 228002. doi:10.1103/PhysRevLett.
117.228002

Singh, R., & Adhikari, R. (2017). Fluctuating hydrodynamics and the Brownian motion of an
active colloid near a wall. Eur. J. Comp. Mech, 26(1-2), 78–97. doi:10.1080/17797179.
2017.1294829

Singh, R., & Adhikari, R. (2018). Generalized Stokes laws for active colloids and their appli-
cations. J. Phys. Commun., 2(2), 025025. doi:10.1088/2399-6528/aaab0d

Singh, R., & Adhikari, R. (2019). Hydrodynamic and phoretic interactions of active particles
in Python. arXiv:1910.00909. Retrieved from https://arxiv.org/abs/1910.00909

Singh, R., Adhikari, R., & Cates, M. E. (2019). Competing chemical and hydrodynamic
interactions in autophoretic colloidal suspensions. J. Chem. Phys., 151, 044901. doi:10.
1063/1.5090179

Singh, R., Ghose, S., & Adhikari, R. (2015). Many-body microhydrodynamics of colloidal
particles with active boundary layers. J. Stat. Mech, 2015(6), P06017. doi:10.1088/
1742-5468/2015/06/p06017

Thutupalli, S., Geyer, D., Singh, R., Adhikari, R., & Stone, H. A. (2018). Flow-induced phase
separation of active particles is controlled by boundary conditions. Proc. Natl. Acad. Sci.,
115(21), 5403–5408. doi:10.1073/pnas.1718807115

Youngren, G., & Acrivos, A. (1975). Stokes flow past a particle of arbitrary shape: A numerical
method of solution. J. Fluid Mech., 69(02), 377–403. doi:10.1017/S0022112075001486

Zick, A. A., & Homsy, G. M. (1982). Stokes flow through periodic arrays of spheres. J. Fluid
Mech., 115, 13–26. doi:10.1017/S0022112082000627

Singh et al., (2020). PyStokes: phoresis and Stokesian hydrodynamics in Python. Journal of Open Source Software, 5(50), 2318. https:
//doi.org/10.21105/joss.02318

5

https://doi.org/10.1016/0010-4655(95)00029-F
https://github.com/kichiki/libstokes
http://as.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.html
http://as.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.html
https://books.google.co.in/books?id=qVXvAAAAMAAJ
https://books.google.co.in/books?id=qVXvAAAAMAAJ
https://doi.org/10.1017/S0022112095003260
https://doi.org/10.1007/BF01194638
https://doi.org/10.1017/CBO9780511624124
https://doi.org/10.1137/1.9780898718003.bm
https://doi.org/10.1137/1.9780898718003.bm
https://doi.org/10.1103/PhysRevLett.117.228002
https://doi.org/10.1103/PhysRevLett.117.228002
https://doi.org/10.1080/17797179.2017.1294829
https://doi.org/10.1080/17797179.2017.1294829
https://doi.org/10.1088/2399-6528/aaab0d
https://arxiv.org/abs/1910.00909
https://doi.org/10.1063/1.5090179
https://doi.org/10.1063/1.5090179
https://doi.org/10.1088/1742-5468/2015/06/p06017
https://doi.org/10.1088/1742-5468/2015/06/p06017
https://doi.org/10.1073/pnas.1718807115
https://doi.org/10.1017/S0022112075001486
https://doi.org/10.1017/S0022112082000627
https://doi.org/10.21105/joss.02318
https://doi.org/10.21105/joss.02318

	Summary
	Methods
	Acknowledgements
	References

