
kiwiPy: Robust, high-volume, messaging for big-data and
computational science workflows
Martin Uhrin1, 2, 3 and Sebastiaan P. Huber2, 3

1 Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs.
Lyngby, Denmark 2 National Centre for Computational Design and Discovery of Novel Materials
(MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland 3 Theory
and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École
Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

DOI: 10.21105/joss.02351

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @dghoshal-lbl
• @uellue

Submitted: 03 June 2020
Published: 03 August 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The computational sciences have seen a huge increase in the use of high-throughput, auto-
mated, workflows over the course of the last two decades or so. Focusing on just our domain
of computational materials science, there have been several large scale initiatives to provide
high-quality results from standardised calculations (Curtarolo et al., 2012; Draxl & Scheffler,
2019; Jain et al., 2013; Landis et al., 2012; Saal, Kirklin, Aykol, Meredig, & Wolverton,
2013; Talirz et al., 2020). Almost all of these repositories are populated using results from
high-throughput quantum mechanical calculations that rely on workflow frameworks (Jain et
al., 2015; Mortensen, Gjerding, & Thygesen, 2020), including our own AiiDA (Huber et al.,
2020; Pizzi, Cepellotti, Sabatini, Marzari, & Kozinsky, 2016) which powers the Materials
Cloud. One of the many challenges for such frameworks is maximising fault-tolerance whilst
simultaneously maintaining high-throughput, often across several systems (typically the client
launching the tasks, the supercomputer carrying out the computations, and the server hosting
the database).
On the software level, these problems are perhaps best addressed by using messaging bro-
kers that take responsibility for guaranteeing the durability (or persistence) and atomicity of
messages and often enable event-based communication. Indeed, solutions such as RabbitMQ,
see widespread adoption in industry. However, adoption in academia has been more limited,
with home-made queue data structures, race condition susceptible locks and polling based
solutions being commonplace. This is likely due to message brokers typically having com-
plex APIs (which reflect the non-trivial nature of the underlying protocol) as well as the lack
of familiarity with event-based programming in general within the community. KiwiPy was
designed specifically to address both these issues, by providing a tool that enables building
robust, event-based systems with an interface that is as simple as possible.
In kiwiPy, all messages are saved to disk by RabbitMQ, meaning that any or all systems
involved in a workflow, including the broker, can be shut down (abruptly or gracefully), and
the previous state can be recreated allowing the workflow to continue when the necessary
resources are brought back online. This is especially important for long-running HPC jobs
that may take days or weeks. This feature differentiates kiwiPy from protocols such as MPI,
ZeroMQ or libraries such as Dask, which do not persist their state.
A number of libraries for interacting directly with message brokers exist, including Pika, aio-
pika, py-amqp, kombu and others. These tend to be rather low-level and focus on channels,
exchanges, routing, sockets and so on. A comparison of the difference in focus between
Pika and kiwiPy can be found in the documentation. At the other end of the spectrum are
libraries such as Celery, RQ and others that provide task queues and libraries such as RPyC,

Uhrin et al., (2020). kiwiPy: Robust, high-volume, messaging for big-data and computational science workflows. Journal of Open Source
Software, 5(52), 2351. https://doi.org/10.21105/joss.02351

1

https://doi.org/10.21105/joss.02351
https://github.com/openjournals/joss-reviews/issues/2351
https://github.com/aiidateam/kiwipy
https://doi.org/10.5281/zenodo.3970461
http://danielskatz.org/
https://github.com/dghoshal-lbl
https://github.com/uellue
http://creativecommons.org/licenses/by/4.0/
http://www.aiida.net/
https://www.materialscloud.org/
https://www.materialscloud.org/
https://www.rabbitmq.com/
https://kiwipy.readthedocs.io/en/latest/
https://zeromq.org/
https://docs.dask.org/en/latest/
https://pika.readthedocs.io/en/stable/
https://aio-pika.readthedocs.io/en/latest/index.html
https://aio-pika.readthedocs.io/en/latest/index.html
https://barryp.org/software/py-amqplib
https://github.com/celery/kombu
https://kiwipy.readthedocs.io/en/latest/
https://docs.celeryproject.org/en/stable/getting-started/introduction.html
https://python-rq.org/
https://www.fullstackpython.com/task-queues.html
https://rpyc.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.02351


Spyne, Python-JRPC and others that enable remote procedure calls. In contrast, kiwiPy brings
together three commonly used message types (task queues, Remote Procedure Calls (RPCs),
and, broadcasts) in a single interface.
All messaging in kiwiPy is done in the Communicator class, which can be trivially constructed
by providing a URI string pointing to the RabbitMQ server. By default, kiwiPy creates
a separate communication thread that the user never sees, allowing them to interact with
the communicator using familiar Python syntax, without the need to be familiar with either
coroutines or multithreading. This has the additional advantage that kiwiPy will maintain
heartbeats (a periodic check to make sure the connection is still alive) with the server whilst
the user code can be doing other things. Heartbeats are an essential part of RabbitMQ’s
fault tolerance; two missed checks will automatically trigger the message to be requeued to
be picked up by another client.
To demonstrate some of the possible usage scenarios, we briefly outline the way kiwiPy is used
in AiiDA. AiiDA, amongst other things, manages the execution of complex workflows made
up of processes that may have checkpoints.

Task queues

As is common for high-throughput workflow engines, AiiDA maintains a task queue to which
processes are submitted (typically from the user’s workstation). These tasks are then consumed
by multiple daemon processes (which may also be on the user’s workstation or remote) and
will only be removed from the task queue once they have been acknowledged to be completed
by the consumer. The daemon can be gracefully or abruptly shut down and no task will be
lost, since the task will simply be requeued by the broker once it notices that the consumer
has died. Furthermore, there are no worries about race conditions between multiple daemon
processes, since the task queue is guaranteed to only distribute each task to, at most, one
consumer at a time.

Remote Procedure Calls

These are used to control live processes. Each process has a unique identifier and can be sent
a pause, play, or kill message, the response to which is optionally sent back to the initiator
to indicate success or something else.

Broadcasts

These currently serve two purposes: sending pause, play, or kill messages to all processes
at once by broadcasting the relevant message, and controlling the flow between processes. If
a parent process is waiting for a child to complete, it will be informed of this via a broadcast
message from the child saying that its execution has terminated. This enables decoupling, as
the child need not know about the existence of the parent.
Together these three message types allow AiiDA to implement a highly-decoupled, distributed,
yet, reactive system that has proven to be scalable from individual laptops to workstations,
driving simulations on high-performance supercomputers with workflows consisting of varying
durations, ranging from milliseconds up to multiple days or weeks.
It is our hope that by lowering the barriers to adoption, kiwiPy will bring the benefits of
industry grade message brokers to academia and beyond, ultimately making robust scientific
software easier to write and maintain.

Uhrin et al., (2020). kiwiPy: Robust, high-volume, messaging for big-data and computational science workflows. Journal of Open Source
Software, 5(52), 2351. https://doi.org/10.21105/joss.02351

2

http://spyne.io
https://github.com/alex-sherman/python-jrpc
https://stackoverflow.com/questions/1879971/what-is-the-current-choice-for-doing-rpc-in-python
https://doi.org/10.21105/joss.02351


Acknowledgements

We would like to thank Giovanni Pizzi, Nicola Marzari, and the AiiDA team for their continu-
ous coordination and development of the project. We also thank Jason Yu for contributing the
first version of the documentation. This work is supported by the MARVEL National Centre
for Competency in Research funded by the Swiss National Science Foundation (grant agree-
ment ID 51NF40-182892) and the European Materials Modelling Council-CSA funded by the
European Union‘s Horizon 2020 research and innovation programme under Grant Agreement
No 723867.

References

Curtarolo, S., Setyawan, W., Hart, G. L. W., Jahnatek, M., Chepulskii, R. V., Taylor, R. H.,
Wang, S., et al. (2012). AFLOW: An automatic framework for high-throughput materials
discovery. Computational Materials Science, 58, 218–226. doi:10.1016/j.commatsci.2012.
02.005

Draxl, C., & Scheffler, M. (2019). The NOMAD laboratory: from data sharing to artificial
intelligence. Journal of Physics: Materials, 2(3), 036001. doi:10.1088/2515-7639/ab13bb

Huber, S. P., Zoupanos, S., Uhrin, M., Talirz, L., Kahle, L., Häuselmann, R., Gresch, D., et
al. (2020). AiiDA 1.0, a scalable computational infrastructure for automated reproducible
workflows and data provenance. Retrieved from http://arxiv.org/abs/2003.12476

Jain, A., Ong, S. P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., et al.
(2015). FireWorks: a dynamic workflow system designed for high-throughput applications.
Concurrency and Computation: Practice and Experience, 27(17), 5037–5059. doi:10.
1002/cpe.3505

Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., et al.
(2013). The Materials Project: A materials genome approach to accelerating materials
innovation. APL Materials, 1(1), 011002. doi:10.1063/1.4812323

Landis, D. D., Hummelshoj, J. S., Nestorov, S., Greeley, J., Dulak, M., Bligaard, T., Norskov,
J. K., et al. (2012). The Computational Materials Repository. Computing in Science &
Engineering, 14(6), 51–57. doi:10.1109/MCSE.2012.16

Mortensen, J., Gjerding, M., & Thygesen, K. (2020). MyQueue: Task and workflow scheduling
system. Journal of Open Source Software, 5(45), 1844. doi:10.21105/joss.01844

Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., & Kozinsky, B. (2016). AiiDA: auto-
mated interactive infrastructure and database for computational science. Computational
Materials Science, 111, 218–230. doi:10.1016/j.commatsci.2015.09.013

Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., & Wolverton, C. (2013). Materials Design
and Discovery with High-Throughput Density Functional Theory: The Open Quantum
Materials Database (OQMD). JOM, 65(11), 1501–1509. doi:10.1007/s11837-013-0755-4

Talirz, L., Kumbhar, S., Passaro, E., Yakutovich, A. V., Granata, V., Gargiulo, F., Borelli,
M., et al. (2020). Materials Cloud, a platform for open computational science, 1–22.
Retrieved from http://arxiv.org/abs/2003.12510

Uhrin et al., (2020). kiwiPy: Robust, high-volume, messaging for big-data and computational science workflows. Journal of Open Source
Software, 5(52), 2351. https://doi.org/10.21105/joss.02351

3

https://doi.org/10.1016/j.commatsci.2012.02.005
https://doi.org/10.1016/j.commatsci.2012.02.005
https://doi.org/10.1088/2515-7639/ab13bb
http://arxiv.org/abs/2003.12476
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1063/1.4812323
https://doi.org/10.1109/MCSE.2012.16
https://doi.org/10.21105/joss.01844
https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.1007/s11837-013-0755-4
http://arxiv.org/abs/2003.12510
https://doi.org/10.21105/joss.02351

	Summary
	Task queues
	Remote Procedure Calls
	Broadcasts

	Acknowledgements
	References

