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Statement of Need

Machine learning (ML) is emerging as an essential tool in the molecular modeling community.
The most mature applications are in batch learning with data generated from molecular mod-
eling calculations. For example, one can run a molecular dynamics (MD) or density functional
theory (DFT) simulation to completion, from which the trajectory is then used as input data to
train a deep neural network that reproduces the energetics at a fraction of the computational
cost. Some recent examples include an energy-conserving force-field learned with a custom
gradient-domain model (Chmiela et al., 2017), DFT-based neural network force-fields (J. S.
Smith et al., 2017a), and a neural network coarse-grained potential (Wang et al., 2019). Other
applications include the use of ML methods for collective variable (CV) calculation (Trapl et
al., 2019) and enhanced sampling (Wang, Lamim Ribeiro, & Tiwary, 2020) for MD simula-
tions. A limitation of these methods is that they treat the molecular modeling calculations
as a static dataset, whereas molecular modeling calculations can be treated as interrogative
functions, opening the door to methods like reinforcement learning or active learning. Thus
there is a clear limitation of existing implementations due to their sequential nature of going
from calculation to ML. Another practical issue is that neural network force-field implemen-
tations often duplicate standard ML frameworks, preventing them from keeping progress with
state-of-the art methods. For example Rupp, Tkatchenko, Müller, & Anatole Von Lilienfeld
(2012) and Botu & Ramprasad (2015) are benchmark works in this field and custom imple-
mentations. This limits the scope and speed of translating ML advances to the molecular
modeling community.
This need has led us to develop HOOMD-TF, a flexible direct integration of a standard ML
library and standard molecular simulation framework that maintains GPU acceleration. Our
goals are to improve the reproducibility of ML methods in molecular simulation, ease trans-
lation of ML advances, and remove the need for sequential simulation and ML. This should
enable active learning, reinforcement learning, and online learning of molecular simulations.
There are other applications focusing on ML in molecular modeling, such as DeepChem and
Pyzer-Knapp, Li, & Aspuru-Guzik (2015), which are largely concerned with property prediction
and representation. There are also similar works to HOOMD-TF called OpenMM-NN (East-
man, 2018), which allows the use of pre-trained TensorFlow models in OpenMM (Eastman et
al., 2013), and TorchANI (Gao, Ramezanghorbani, Isayev, Smith, & Roitberg, 2020), which
uses PyTorch (Paszke, Gross, Chintala, & Chanan, 2016) for similar purposes. In contrast,
HOOMD-TF fills the niche of online model training, while also allowing pre-trained model
imports in MD simulation, coarse-grained force-field learning, collective variable calculation
and manipulation, and force-field biasing.
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Summary

The HOOMD-TF package pairs the TensorFlow ML library (Abadi et al., 2015) with the
HOOMD-blue simulation engine (Anderson, Glaser, & Glotzer, 2020) to allow for flexible on-
line ML and tensor calculations during HOOMD-blue simulations. Since both TensorFlow and
HOOMD-blue are GPU-accelerated, HOOMD-TF was designed with a GPU-GPU communi-
cation scheme that minimizes latency between GPU memory to preserve execution speed.
HOOMD-TF enables online ML in MD simulations with the support of the suite of tools
available through TensorFlow. It can be used for force matching, calculation of arbitrary
collective variables, force-field biasing or learning using said CVs, and analysis using tensor
calculations. These tasks can be performed either online during a simulation or offline using a
saved trajectory. This is accomplished by using TensorFlow tensors filled with particle positions
and neighbor lists from HOOMD-blue. This also allows the use of TensorFlow’s derivative
propagation to perform biasing with arbitrary CVs, provided that they can be expressed as
a tensor operation of either the neighbor list or particle positions. Another application of
this software is learning coarse-grained force-fields with either neural networks or other ML
models. The ability to run force matching calculations online makes the coarse-graining
workflow straightforward in HOOMD-TF. Since HOOMD-blue can use external force-fields
and TensorFlow can learn as the simulation is running, learning can be terminated as soon
as the force-matching algorithm converges, requiring only one simulation iteration. Contrast
this with a popular force-matching package, VOTCA (Rühle, Junghans, Lukyanov, Kremer,
& Andrienko, 2009), which uses an iterative approach. See, for example, Jadrich, Lindquist,
& Truskett (2017).
HOOMD-TF uses TensorFlow to save and load models, and is therefore compatible with pre-
trained TensorFlow models. TensorFlow’s TensorBoard utility can also be used to track and
examine model training and performance. HOOMD-TF can be used independent of HOOMD-
blue by using trajectories via the MDAnalysis framework (Gowers et al., 2016; Michaud-
Agrawal & Beckstein, 2011). This allows for previously-trained TensorFlow models to be
used on trajectories that were produced by other MD engines, analysis of new CVs from
a previously-run simulation, and training of models from trajectories. This offline execution
scheme is functionally similar to TorchANI (Gao et al., 2020). TorchANI uses PyTorch (Paszke
et al., 2016) rather than TensorFlow to implement the ANI deep learning models (J. S. Smith
et al., 2017b), with many of the same advantages provided by HOOMD-TF. TorchANI is not
an MD engine, so it has less support for specific features like neighbor lists or particle mesh
Ewald summation.
Overall, HOOMD-TF makes online ML in MD simulations possible with little additional ef-
fort, and eases the use of TensorFlow models on MD trajectories for both machine learning
and analysis. The ability to tightly integrate trained ML models in HOOMD-TF can enable
their use in simulations by removing the need for custom implementations and improve repro-
ducibility in the field. The online functionality of HOOMD-TF enables the use of simulations
as interrogable models rather than static data generators, allowing direct use in an active
and/or reinforcement learning framework. TensorFlow computation graphs allow for trans-
parent and simple model designation with a high degree of customizability, replicability, and
efficiency.

Accessing the Software

HOOMD-TF is freely available under the MIT license on github. The documentation is hosted
on readthedocs.io.
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