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Polysomnographic Sleep Stage Scoring

Many features of sleep, such as the existence of rapid eye movement (REM) sleep or non-REM
sleep stages, as well as some of the underlying physiological mechanisms controlling sleep, are
conserved across different mammalian species. Sleep research is important to understanding
the impact of disease on circadian biology and optimal waking performance, and to advance
treatments for sleep disorders, such as narcolepsy, shift work disorder, non-24 sleep-wake
disorder, and neurodegenerative disease. Given the evolutionary relatedness of mammalian
species, sleep architecture and changes therein may provide reliable translational biomarkers
for pharmacological engagement in proof-of-mechanism clinical studies.
Key physiological indicators in sleep include electroencephalography (EEG) or electrocorticog-
raphy, electrooculography (EOG), and electromyography (EMG). Polysomnography (PSG) is
the simultaneous collection of some or all of these measurements and is typically performed
in a specialized sleep laboratory. Determination of the wake or sleep stage someone is in (i.e.,
wake, REM sleep, or non-REM sleep, which is broken down into stages 1, 2, or 3), relies on
the judgment of a trained professional who scores the data based on the standardized criteria
for the recording and staging of human PSG set forth by Berry et al. (2017). Disagree-
ment between individual recordings might arise due to differences in instrumentation or to
the subjective opinion of the individual scoring the stages. Animal sleep studies show even
greater variability (Robert, Guilpin, & Limoge, 1999), as each laboratory uses methods that
best suit their individual needs (e.g., electrode/reference positions, muscle choice for EMG
implantation, use of EOG, etc.). While these technical differences make it difficult to compare
studies, the variability in scoring of sleep stages makes it even more challenging. Although
numerous scoring algorithms exist, most are unreliable, especially following drug treatment.
After nearly half a century of PSG studies, the gold standard of scoring sleep architecture
remains a complete and thorough examination of the PSG signals, which are scored in 4-,
10-, or 12-second epochs in animal studies and 30-second epochs in human studies, making it
very difficult to screen through drugs in animal studies and cumbersome to implement large
clinical trials.

Applications and Advantage

To expedite the tedious process of visually analyzing PSG signals and to further objectivity
in the scoring procedure, a number of sleep staging algorithms have been developed both
for animals (Barger, Frye, Liu, Dan, & Bouchard, 2019; Bastianini et al., 2014; Stephenson,
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Caron, Cassel, & Kostela, 2009; Vladimir, Ting-Chuan, Yuting, Bryan, & Steven, 2020) and
human subjects (Gunnarsdottir et al., 2020; Penzel & Conradt, 2000; Zhang et al., 2020) as
reviewed most recently by Fiorillo et al. (2019) and Faust, Razaghi, Barika, Ciaccio, & Acharya
(2019). However, computer-based methods are typically tested on data obtained from healthy
subjects or control animals, and performance is assessed only in a few cases in subjects with
sleep disorders or following drug treatment (Allocca et al., 2019; Boostani, Karimzadeh, &
Nami, 2017). Furthermore, scoring sleep for hundreds of animals in a typical preclinical drug
discovery effort often becomes a bottleneck and a potential source of subjectivity affecting
research outcomes.
In this paper, we present an automated approach intended to eliminate these potential issues.
The initial application of our approach is for basic and discovery research in which experiments
are conducted in large cohorts of rodents, with the expectation that results can be translated
to higher-order mammals or even humans. Building on features classically extracted from EEG
and EMG data and machine learning-based classification of PSG, this approach is capable of
staging sleep in multiple species under control and drug-treated conditions, facilitating the
detection of treatment-induced changes or other manipulations (e.g., genetic). Using human
interpretable features calculated from EEG and EMG will be important to understand drug
mechanisms, for prediction of treatment outcomes, and as biomarkers or even translational
biomarkers. For example, one of the features used by the algorithm is the power in the theta
frequency band (called eeg_theta in the code), which is the 4 Hz to 12 Hz range and it is
known that an increase of theta activity together with low EMG activity (our relevant features
are called emg_high and emg_RMS) are the hallmark of REM sleep (see the figure in Wikipedia
contributors (2020)). However, theta power is also associated with other phenomena, like
anxiety (John, Kiss, Lever, & Érdi, 2014), thus our eeg_theta feature, besides being used
for sleep scoring can also be used as a biomarker of drug effect.
Multiple software applications have been developed to address the problem of automated sleep
stage scoring. In their comparative review, Boostani et al. (2017) found that the best results
could be achieved when entropy of wavelet coefficients along with a random forest classifier
were chosen as feature and classifier, respectively. Another recent method (Miladinović et al.,
2019) used cutting-edge machine learning methods combining a convolutional neural network-
based architecture to produce domain invariant predictions integrated with a hidden Markov
model to constrain state dynamics based upon known sleep physiology. While our method also
builds on machine learning techniques, it is based on interpretable features and uses a simpler
algorithm for classification – which should make it an ideal choice for the broader community
as well as for sleep experts who might not be too familiar with complex machine learning
approaches. Furthermore, we chose not to constrain the number of identifiable sleep/wake
states or the probability of transition from one state to another, as we and others have found
that drug interventions (Harvey et al., 2013) and disease processes (de Mooij et al., 2020)
tend to change not only the amount of time spent in different sleep stages but their transition
probabilities as well. Finally, our method is a supervised method that requires a training set.
While this might seem to be a disadvantage over non-supervised methods, we have found that
drug treatment or pathological conditions can result in sleep stages not observed in healthy
controls. Thus, the algorithm must be trained to these new stages.

Brief Software Description

Our software package, implemented in Matlab, is available for download on GitHub (Kiss et
al., 2020). Automatic sleep staging consists of the classical consecutive steps of machine
learning-based sleep scoring algorithms Figure 1. First, offline stored EEG and EMG data are
loaded into memory to allow for the uniform processing of time-series data and segmented into
consecutive 10-second, non-overlapping epochs that correspond to manually scored epochs.
Second, features are extracted from the raw signal for all epochs. Features consist of the power
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contained in physiologically-relevant frequency bands, as well as Hjorth parameters for both
EEG and EMG data. Third, features undergo a pre-processing step including the following
operations: unusable epochs that contain too much noise or contain no signal are removed.
Features are then transformed using the logarithm function making feature distributions more
Gaussian-like, thereby facilitating subsequent machine classification. Finally, each feature is
normalized to its median wake value within an animal to enable usability of the algorithm
across laboratories. Wake periods can be identified before running the algorithm using the
manually-scored training set or an experiment can be performed such that a given period is
expected to be comprised of an extended period of wakefulness. Following feature extraction, a
combined filter and wrapper method-based feature selection step is applied. This step ensures
that features with the most predictive value are chosen and also helps to prevent over-fitting.
For classification, the k-nearest neighbors classifier is used on data pre-processed following the
procedure described above.

Figure 1: Summary of training and using the k-nearest neighbors algorithm for predicting sleep stage
labels.

The algorithm was used to predict sleep stages in mice (Figure 2), rats (Figure 3) and non-
human primates (data not shown). Prediction accuracy was found to depend on a number of
parameters of the input data, including consistency of manual scores and physiological signals,
as well as the amount of artifacts. Furthermore, relative frequency of predicted labels can
influence efficacy, with rare labels being harder to predict. The code on GitHub (Kiss et al.,
2020) accompanying this paper contains the abridged version of two datasets, one from male
Trace Amine-Associated Receptor 1 (TAAR1) knockout mice described in detail in Schwartz,
Palmerston, Lee, Hoener, & Kilduff (2018) (Figure 2) and the other from male Sprague-
Dawley rats collected in the Sleep Neurobiology Laboratory at SRI International (Figure 3).
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The rodents in both datasets received an oral dosing of a water-based vehicle solution.
Three labels were predicted: wake (W), non-REM sleep (NR), and REM sleep (R), and
prediction efficacy was calculated. (However, note that any number of stages can be trained
depending on how elaborate the manual scoring is.) The model was first used to train a single
classifier merging training data from all animals (Figure 2 A, Figure 3 A), then individual
models were trained, one for each animal (Figure 2 B, Figure 3 B). The GitHub repository
includes additional information on prediction accuracy, including detailed values of true and
false positive rates, as well as a method to deal with imbalanced data.

Figure 2: Estimation of prediction accuracy for the transgenic mouse data. For each state (wake – W,
non-REM – NR, REM – R) and animal (points on plots) true and false positive rates are calculated.
Red crosses denote mean and SEM. In A, training data was merged and one single classifier was
trained to predict sleep stages of all animals. In B, an individual classifier was trained for each animal
separately.

State labels were predicted the same way for the rat data (the same set of GitHub scripts
were run) and prediction accuracy represented on Figure 3 shows very similar results.
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Figure 3: Estimation of prediction accuracy for the rat data. Prediction and figure set up as in
Figure 2.
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