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Summary

The evolution of peak profiles in synchrotron X-ray diffraction (SXRD) data can tell us how the
internal crystallographic structures of metals change during applied heating, high temperature
straining and cooling cycles (Canelo-Yubero et al., 2016; Daniel, Nguyen, Atkinson, & Quinta
da Fonseca, 2019; Hu, Sun, Hector, & Ren, 2017; Stark et al., 2015), which is invaluable
information used to improve industrial processing routes (Salem, Glavicic, & Semiatin, 2008).
The experiment requires a beamline, at a synchrotron radiation facility such as Diamond Light
Source (Diamond Light Source Ltd, 2020), to produce a high energy X-ray beam and illuminate
a polycrystalline sample (Daniel et al., 2019). The results are recorded in the form of time-
resolved diffraction pattern rings, which are converted into a spectra of intensity peaks versus
two-theta angle for a given direction (Ashiotis et al., 2015; Filik et al., 2017; Hammersley,
Svensson, Hanfland, Fitch, & Hausermann, 1996). However, since many intensity profiles
are collected during each experiment, with detectors recording at speeds greater than 250 Hz
(DECTRIS - detecting the future, 2020; Loeliger et al., 2012), fitting each of the individual
lattice plane peaks can take a long time using current available software (Basham et al., 2015;
Hammersley, 2016; Merkel & Hilairet, 2015).

There are existing packages which can be used to fit peaks in SXRD spectra, examples
include DAWN (Basham et al., 2015), Multifit/Polydefix (Merkel & Hilairet, 2015) and Fit2d
(Hammersley, 2016). In these cases, the software are compiled packages with a graphical user
interface. Setting up the peak fits usually involves a point and click method to select the peak
bounds, meaning it is unlikely to create a repeatable analysis. These packages also struggle
to distinguish any peaks that overlap, which is important for capturing changes in multi-
phase materials (Daniel et al., 2019). MAUD (Lutterotti, Vasin, & Wenk, 2014) is a software
package that approaches fitting in a different way. MAUD uses the Rietveld refinement method
(Rietveld, 1969) to match a model of the beamline setup and material properties to the data.
This method allows determination of additional material properties, such as crystallographic
texture, but applies an averaging over the peak positions and intensities to fit the model,
meaning individual peak shifts cannot be accurately determined.

xrdfit is a Python package we have developed for a faster fitting of diffraction peaks in SXRD
(and XRD) spectra, which can be used for datasets containing many thousands of patterns.
It is intended as an easy to use tool which enables automated, repeatable identification of
peak positions and profiles in spectra with multiple individual or overlapping lattice plane
peaks. The features of xrdfit are shown schematically in Figure 1. xrdfit uses the Python
package 1mfit (Newuville, Stensitzki, Allen, & Ingargiola, 2014) for the underlying fitting.
Features are included for selecting different ‘cakes’ of data and automating fitting over many
spectra, to enable tracking of peaks as they shift throughout the experiment. By analysing how
different lattice plane peaks change during simulated processing, as can be seen in Figure 2,
the transformation and micromechanical behaviour of the material can be understood.
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Figure 1: A schematic representing the features of xrdfit and the analysis of a synchrotron X-ray
diffraction (SXRD) pattern, showing: (a) a polar plot of the caked intensity data; (b) an option
for selecting different cakes and merging caked datasets; (c) adjustable peak bounds (grey) and
adjustable maxima and minima bounds (red and green) for constraining the peak fit; (d) an example
fit of multiple and overlapping peaks.

xrdfit is designed to be accessible for all researchers who need to process SXRD (and XRD)
spectra and so does not require a detailed knowledge of programming or fitting. The package
has been used for the analysis of data taken during the hot deformation of a two-phase
titanium alloy, which is presented in an article currently in press (Daniel et al., 2019), and
will be used for future studies investigating the high temperature processing of metals in our
research group. We hope that its public release will allow other researchers to benefit from
fast data fitting (up to 40 times faster than the current software), reducing the effort required
to analyse their experimental data.
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Figure 2: An example analysis of a two-phase titanium (Ti-6Al-4V) alloy during high temperature
and high strain rate deformation, showing characteristic shifts of the o (0002) peak centre. The
shifts of the peak can be used to calculate elastic lattice straining in the hexagonal close-packed
(hcp) lattice, as well as measure the thermal contraction on cooling.
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