
SysIdentPy: A Python package for System Identification
using NARMAX models
Wilson Rocha Lacerda Junior1, Luan Pascoal da Costa Andrade1,
Samuel Carlos Pessoa Oliveira1, and Samir Angelo Milani Martins1, 2

1 GCoM - Modeling and Control Group at Federal University of São João del-Rei, Brazil 2
Department of Electrical Engineering at Federal University of São João del-Rei, Brazil

DOI: 10.21105/joss.02384

Software
• Review
• Repository
• Archive

Editor: David P. Sanders
Reviewers:

• @Shibabrat
• @dawbarton

Submitted: 20 May 2020
Published: 02 October 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The field of System Identification (SI) aims to build mathematical models for static and
dynamic behavior from experimental data (Ljung, 1987). In particular, nonlinear system
identification has become a central issue in the SI community, and from the 1950s onwards
many methods have been proposed. In this respect, NARMAX (Nonlinear AutoRegressive
Moving Average with eXogenous input) models are among the most well-documented and
used model representation of dynamical systems (Billings, 2013).
The NARMAX model was proposed by (Billings & Leontaritis, 1981; Chen & Billings, 1989;
Leontaritis & Billings, 1985) and can be described as

yk = F [yk−1, . . . , yk−ny , xk−d, xk−d−1, . . . , xk−d−nx + ek−1, . . . , ek−ne ] + ek, (1)

where ny ∈ N∗, nx ∈ N, ne ∈ N , are the maximum lags for the system output and input
respectively; xk ∈ Rnx is the system input and yk ∈ Rny is the system output at discrete
time k ∈ Nn; ek ∈ Rne represents uncertainties and possible noise at discrete time k. In this
case, F is some nonlinear function of the input and output regressors and d is a time delay
typically set to d = 1.
Although there are many possible approximations of F(·) (e.g., Neural Networks, Fuzzy,
Wavelet, Radial Basis Function), the power-form Polynomial NARMAX model is the most
commonly used (Billings, 2013; Khandelwal, Schoukens, & Tóth, 2020):

yk =

p∑
i=1

Θi ×
nx∏
j=0

ubi,j
k−j

ne∏
l=1

edi,l
k−l

ny∏
m=1

yai,m
k−m (2)

where p is the number of regressors, Θi are the model parameters, and ai,m, bi, j and di, l ∈ N
are the exponents of the output, input and noise terms, respectively.
The following example is a polynomial NARMAX model where the nonlinearity degree is equal
to 2, identified from experimental data of a DC motor/generator with no prior knowledge of
the model form, taken from (Lacerda Junior, Almeida, & Martins, 2017):

yk =1.7813yk−1 − 0.7962yk−2 + 0.0339xk−1 − 0.1597xk−1yk−1 + 0.0338xk−2+

+ 0.1297xk−1yk−2 − 0.1396xk−2yk−1 + 0.1086xk−2yk−2 + 0.0085y2k−2 + 0.0247ek−1ek−2

(3)

The Θ values are the coefficients of each term of the polynomial equation.

Lacerda et al., (2020). SysIdentPy: A Python package for System Identification using NARMAX models. Journal of Open Source Software,
5(54), 2384. https://doi.org/10.21105/joss.02384

1

https://doi.org/10.21105/joss.02384
https://github.com/openjournals/joss-reviews/issues/2384
https://github.com/wilsonrljr/sysidentpy
https://doi.org/10.5281/zenodo.4026516
http://sistemas.fciencias.unam.mx/~dsanders
https://github.com/Shibabrat
https://github.com/dawbarton
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02384


Polynomial basis functions are one of the most used representations of NARMAX models due
to several interesting atrributes, such as (Aguirre, 2004; Billings, 2013):

• All polynomial functions are smooth in R.
• The Weierstrass approximation theorem (Weierstrass, 1885) states that any continuous

real-valued function defined on a closed and bounded space [a, b] can be uniformly
approximated using a polynomial on that interval.

• They can describe several nonlinear dynamical systems (Billings, 2013), including in-
dustrial processes, control systems, structural systems, economic and financial systems,
biology, medicine, and social systems (Aguirre, 2004; Billings, 2013; Boynton, Balikhin,
Wei, & Lang, 2018; Chiras, Evans, & Rees, 2001; Fung, Wong, Ho, & Mignolet, 2003;
Guo, Guo, Billings, & Wei, 2016; Kukreja, Galiana, & Kearney, 2003; Lacerda Junior,
Martins, Nepomuceno, & Lacerda, 2019; Martins & Aguirre, 2016).

• Several algorithms have been developed for both structure selection and parameter
estimation of polynomial NARMAX models.

• Polynomial NARMAX models can be used both for prediction and inference. The struc-
ture of polynomial NARMAX models are easy to interpret and can be related to the
underlying system, which is not a trivial task when using, for example, neural or wavelet
functions.

Estimating the parameters of NARMAX models is a simple task if the model structure is
known a priori. However, usually there is no information on what terms one should include
in the final model, and selecting the correct terms has to be part of the system identifica-
tion procedure. Thus, the identification of NARMAX models is twofold: selecting the most
significant regressors given a dictionary of candidate terms, which relies on model structure
selection algorithms, and estimating their parameters.

SysIdentPy

SysIdentPy is an open-source Python package for system identification using polynomial
NARMAX models. The package can handle SISO (Single-Input Single-Output) and MISO
(Multiple-Inputs Single-Output) NARMAX model identification and its variants such as
NARX, NAR, ARMAX, ARX, and AR models. It provides various tools for both model
structure selection and parameter estimation including classical algorithms, e.g., forward
regression orthogonal least squares and extended least squares orthogonal forward regression;
parameter estimation using ordinary least squares, recursive algorithms and adaptative filters;
the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Khinchin’s law
of iterated logarithm criterion (LILC), and Final Prediction Error (FPE) methods for model
order selection (Haber & Keviczky, 1999); regression metrics; and residual analysis. The
reader is referred to the package documentation for further details.
SysIdentPy is designed to be easily expanded and user friendly. Moreover, the package
aims to provide useful tools for researchers and students not only in the SI field, but also in
correlated areas such as Machine Learning, Statistical Learning and Data Science. Recently, an
R package was published (Ayala, Gritti, & Santos Coelho, 2020) with tools to model dynamic
systems using NARMAX models. However, to the best of our knowledge, SysIdentPy is
the first open-source package for system identification using NARMAX models in Python.
Moreover, SysIdentPy includes recursive and gradient methods for parameter estimation, e.g.,
recursive least squares, affine least mean squares, sign-sign least mean squares and many
others that are not available in the above-mentioned R package. Also, the user can choose
between four methods for model order selection, which is not possible with the mentioned R
package.

Lacerda et al., (2020). SysIdentPy: A Python package for System Identification using NARMAX models. Journal of Open Source Software,
5(54), 2384. https://doi.org/10.21105/joss.02384

2

https://doi.org/10.21105/joss.02384


Example

The following is an example of how to use SysIdentPy to build a NARMAX model from
data. For simplicity, the example uses simulated data with 1000 samples, generated using the
method get_miso_data:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sysidentpy.polynomial_basis import PolynomialNarmax
from sysidentpy.metrics import root_relative_squared_error
from sysidentpy.utils.generate_data import get_miso_data

x_train, x_valid, y_train, y_valid = get_miso_data(n=1000,
colored_noise=False,
sigma=0.001,
train_percentage=90)

Assuming that there is no information regarding what system generated the data, a dictionary
of candidate terms must be created by defining the nonlinearity degree of the polynomial
function and the maximum lag of the input and output terms. These parameters are, respec-
tively, non_degree, ylag, xlag. The Akaike Information Criterion is chosen for model
order selection and the least squares method is used for parameter estimation:

model = PolynomialNarmax(non_degree=2,
order_selection=True,
ylag=2, xlag=[[1, 2], [1, 2]],
info_criteria='aic',
estimator='least_squares',
)

The user can also run a SISO example by replacing get_miso_data with get_siso_data
and the xlag values with an integer or a list of integers. If one wants to estimate the
parameters using, for example, the recursive least squares algorithm, just set estimator to
'recursive_least_squares'. Replacing the AIC method with BIC, for example, can be
done analogously by replacing 'aic' with 'bic'.
The fit method is used to obtain the model and predict to validate the model using new
data. The metric to evaluate is the relative root squared error. To get the root mean square
error metric, for example, import it using from sysidentpy.metrics import root_mean
_square_error and replace the root relative squared error method with it.

model = PolynomialNarmax(non_degree=2,
order_selection=True,
ylag=2, xlag=[[1, 2], [1, 2]],
info_criteria='aic',
estimator='least_squares',
)

model.fit(x_train, y_train)
yhat = model.predict(x_valid, y_valid)
rrse = root_relative_squared_error(y_valid, yhat)
print(rrse)

Lacerda et al., (2020). SysIdentPy: A Python package for System Identification using NARMAX models. Journal of Open Source Software,
5(54), 2384. https://doi.org/10.21105/joss.02384

3

https://doi.org/10.21105/joss.02384


The model.results and model.residuals statements return the polynomial model ob-
tained using the fit method and plot the results for qualitative analysis.

results = pd.DataFrame(model.results(err_precision=8,
dtype='dec'),

columns=['Regressors', 'Parameters', 'ERR'])

print(results)
ee, ex, extras, lam = model.residuals(x_valid, y_valid, yhat)
model.plot_result(y_valid, yhat, ee, ex)

The table below and Figure 1 are the ouput of the aforementioned example. Table 1 details the
regressors chosen to compose the final model, its respective parameters and the error reduction
ratio (ERR), which measure the contribution of each regressor to explain the system output.
ERR values can be interpreted as a feature importance metric. Figure 1 depicts the simulation
of model prediction and the validation data as well as the autocorrelation of the model residues
and the cross-correlation between the input and the residues.

Regressors Parameters ERR
x2(k-1) 0.6000 0.90482955
x2(k-2)x1(k-1) -0.3000 0.05072675
y(k-1)^2 0.3999 0.04410386
x1(k-1)y(k-1) 0.1000 0.00033239

Figure 1. Results from modeling a simulated system available with the SysIdentPy package.
Free run simulation (validation data vs. model prediction), autocorrelation of the residues
and cross correlation between residues and the input.
For more information and examples of how to build NARMAX models and its variants using
different methods for parameters estimation, model order selection and many more, see the
package documentation.

Future work

Future releases will include new methods for model structure selection of polynomial NAR-
MAX models, new basis functions, multiobjective model structure selection and parameter

Lacerda et al., (2020). SysIdentPy: A Python package for System Identification using NARMAX models. Journal of Open Source Software,
5(54), 2384. https://doi.org/10.21105/joss.02384

4

https://doi.org/10.21105/joss.02384


estimation algorithms, new adaptative filters, frequency domain analysis, and algorithms for
using NARMAX models for classification problems.

References

Aguirre, L. A. (2004). Introdução à identificação de sistemas–técnicas lineares e não-lineares
aplicadas a sistemas reais. Editora UFMG.

Ayala, H. V. H., Gritti, M. C., & Santos Coelho, L. dos. (2020). An r library for nonlinear
black-box system identification. SoftwareX, 11, 100495.

Billings, S. A. (2013). Nonlinear system identification: NARMAX methods in the time,
frequency, and spatio-temporal domains (p. 574). Chichester: John Wiley & Sons.

Billings, S. A., & Leontaritis, I. J. (1981). Identification of Nonlinear Systems Using Param-
eter Estimation Techniques. In Proceedings of the IEEE conference on control and its
application (pp. 183–187).

Boynton, R., Balikhin, M., Wei, H., & Lang, Z. (2018). Applications of NARMAX in space
weather. In Machine learning techniques for space weather (pp. 203–236). Elsevier.
doi:10.1016/b978-0-12-811788-0.00008-1

Chen, S., & Billings, S. A. (1989). Representations of non-linear systems: The NAR-
MAX model. International Journal of Control, 49(3), 1013–1032. doi:10.1080/
00207178908559683

Chiras, N., Evans, C., & Rees, D. (2001). Nonlinear gas turbine modeling using NARMAX
structures. IEEE Transactions on Instrumentation and Measurement, 50(4), 893–898.

Fung, E. H. K., Wong, Y. K., Ho, H. F., & Mignolet, M. P. (2003). Modelling and predic-
tion of machining errors using ARMAX and NARMAX structures. Applied Mathematical
Modelling, 27(8), 611–627. doi:10.1016/s0307-904x(03)00071-4

Guo, Y., Guo, L. Z., Billings, S. A., & Wei, H.-L. (2016). Ultra-orthogonal forward regression
algorithms for the identification of non-linear dynamic systems. Neurocomputing, 173,
715–723. doi:10.1016/j.neucom.2015.08.022

Haber, R., & Keviczky, L. (1999). Nonlinear system identification. 2. Nonlinear system
structure identification (Vol. 7). Springer Science & Business Media.

Khandelwal, D., Schoukens, M., & Tóth, R. (2020). A tree adjoining grammar representation
for models of stochastic dynamical systems. arXiv preprint arXiv:2001.05320. doi:10.
1016/j.automatica.2020.109099

Kukreja, S. L., Galiana, H. L., & Kearney, R. E. (2003). NARMAX representation and
identification of ankle dynamics. IEEE transactions on biomedical engineering, 50(1),
70–81. doi:10.1109/tbme.2002.803507

Lacerda Junior, L., W. R, Almeida, V. M., & Martins, S. A. M. (2017). Identificação de
um motor/gerador cc por meio de modelos polinomiais autorregressivos e redes neurais
artificais. In XIII simpósio brasileiro de automação inteligente (pp. 1–6). Porto Alegre.

Lacerda Junior, W. R., Martins, S. A. M., Nepomuceno, E. G., & Lacerda, M. J. (2019).
Control of hysteretic systems through an analytical inverse compensation based on a narx
model. IEEE Access, 7, 98228–98237. doi:10.1109/access.2019.2926057

Leontaritis, I. J., & Billings, S. A. (1985). Input-output parametric models for non-linear
systems – part i: Deterministic non-linear systems; part ii: Stochastic non-linear systems.
International Journal of Control, 41(2), 303–328; 329–344.

Lacerda et al., (2020). SysIdentPy: A Python package for System Identification using NARMAX models. Journal of Open Source Software,
5(54), 2384. https://doi.org/10.21105/joss.02384

5

https://doi.org/10.1016/b978-0-12-811788-0.00008-1
https://doi.org/10.1080/00207178908559683
https://doi.org/10.1080/00207178908559683
https://doi.org/10.1016/s0307-904x(03)00071-4
https://doi.org/10.1016/j.neucom.2015.08.022
https://doi.org/10.1016/j.automatica.2020.109099
https://doi.org/10.1016/j.automatica.2020.109099
https://doi.org/10.1109/tbme.2002.803507
https://doi.org/10.1109/access.2019.2926057
https://doi.org/10.21105/joss.02384


Ljung, L. (1987). System identification: Theory for the user. Prentice-hall. doi:10.1016/
0005-1098(89)90019-8

Martins, S. A. M., & Aguirre, L. A. (2016). Sufficient conditions for rate-independent hys-
teresis in autoregressive identified models. Mechanical Systems and Signal Processing, 75,
607–617. doi:10.1016/j.ymssp.2015.12.031

Weierstrass, K. (1885). Über die analytische darstellbarkeit sogenannter willkürlicher func-
tionen einer reellen veränderlichen. Sitzungsberichte der Königlich Preußischen Akademie
der Wissenschaften zu Berlin, 2, 633–639.

Lacerda et al., (2020). SysIdentPy: A Python package for System Identification using NARMAX models. Journal of Open Source Software,
5(54), 2384. https://doi.org/10.21105/joss.02384

6

https://doi.org/10.1016/0005-1098(89)90019-8
https://doi.org/10.1016/0005-1098(89)90019-8
https://doi.org/10.1016/j.ymssp.2015.12.031
https://doi.org/10.21105/joss.02384

	Summary
	SysIdentPy
	Example
	Future work
	References

