
multivar_horner: A Python package for computing
Horner factorisations of multivariate polynomials
Jannik Michelfeit1, 2

1 Technische Universität Dresden, Dresden, Germany 2 Max Planck Institute of Molecular Cell
Biology and Genetics, Dresden, Germany

DOI: 10.21105/joss.02392

Software
• Review
• Repository
• Archive

Editor: David P. Sanders
Reviewers:

• @henrik227
• @saschatimme

Submitted: 20 May 2020
Published: 02 October 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Abstract

Many applications in the sciences require numerically stable and computationally efficient
evaluation of multivariate polynomials. Finding beneficial representations of polynomials,
such as Horner factorisations, is therefore crucial. multivar_horner (Michelfeit, 2018), the
Python package presented here, is, as far as we are aware, the first open-source software for
computing multivariate Horner factorisations. This paper briefly outlines the functionality of
the package and places it in context with respect to previous work in the field. Benchmarks
additionally demonstrate the advantages of the implementation and Horner factorisations in
general.

Introduction

Polynomials are a central concept in mathematics and find application in a wide range of fields
(Akritas, 1989; Boumova, 2002; Cools, 2002; Hecht et al., 2018; Prasolov, 2009). (Multi-
variate) polynomials have different possible mathematical representations and the beneficial
properties of some representations are in great demand in many applications (Hecht et al.,
2018; Lee, 2013; Leiserson, Li, Maza, & Xie, 2010).
The Horner factorisation is such a representation with beneficial properties. Compared to
the unfactorised representation of a multivariate polynomial, in the following called canonical
form, this representation offers some important advantages. Firstly, the Horner factorisation is
more compact, in the sense that it requires fewer mathematical operations in order to evaluate
the polynomial (cf. Figure 4). Consequently, evaluating a multivariate polynomial in Horner
factorisation is faster and numerically more stable (Ceberio & Kreinovich, 2004; Peña & Sauer,
2000a, 2000b) (cf. Figure 2). These advantages come at the cost of an initial computational
effort required to find the factorisation.
The multivar_horner Python package implements a multivariate Horner scheme (“Horner’s
method”, “Horner’s rule”) (Horner, 1819) to compute Horner factorisations of multivariate
polynomials given in canonical form. The package offers the functionality of representing mul-
tivariate polynomials of arbitrary degree in Horner factorisation as well as in canonical form.
Additionally it allows to compute the partial derivatives of a polynomial and to evaluate a
polynomial at a given point. Accordingly the package presented here is useful whenever (mul-
tivariate) polynomials have to be evaluated efficiently, the numerical error of the polynomial
evaluation has to be small, or a compact representation of the polynomial is required. This
holds true for many applications applying numerical analysis. One example use case where
this package is already being employed are novel response surface methods (Michelfeit, 2019)
based on multivariate Newton interpolation (Hecht et al., 2018).
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Functionality

multivar_horner implements a multivariate Horner scheme using the greedy heuristic pre-
sented in (Ceberio & Kreinovich, 2004). In the following the key functionality of this package
is outlined. For more details on polynomials and Horner factorisations please refer to the
literature, e.g. (Neumaier, 2001).
A polynomial in canonical form is a sum of monomials. For a univariate polynomial f(x) =
a0 + a1x + a2x

2 + · · · + adx
d (canonical form), the Horner factorisation is unique: f(x) =

a0+x(a1+x(· · ·x(ad) · · · ). In the multivariate case, however, the factorisation is ambiguous,
as there are multiple possible factors to factorise with. The key functionality of multivar_hor
ner is finding a good instance among the many possible Horner factorisations of a multivariate
polynomial.
Let’s consider the example multivariate polynomial given in canonical form by p(x) = 5 +
x3
1x2 +2x2

1x3 +3x1x2x3. The polynomial p is the sum of 4 monomials, has dimensionality 3
and can also be written as p(x) = 5x0
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3. The coefficients

of the monomials are 5, 1, 2 and 3 respectively.
From this formulation it is straightforward to represent a multivariate polynomial with a single
vector of coefficients and one exponent matrix. Due to its simplicity and universality this kind
of representation is used for defining polynomials as input. It should be noted that this most
trivial representation is computationally expensive to evaluate.
The number of additions of a polynomial remains constant irrespective of the polynomial
factorisation, since it depends solely on the number of monomials and a factorisation does
not influence the number of monomials. This holds true only without taking common subex-
pression elimination into account. Hence the number of additions is irrelevant for evaluating
the quality of a factorisation. In the following we accordingly only count the number of mul-
tiplications for a less biased comparison to other polynomial representations. Note that each
exponentiation is counted as (exponent - 1) operations.

Usage

The following code snippet shows how to use multivar_horner to compute a Horner fac-
torisation of p:

from multivar_horner import HornerMultivarPolynomial
coefficients = [5.0, 1.0, 2.0, 3.0]
exponents = [[0, 0, 0], [3, 1, 0], [2, 0, 1], [1, 1, 1]]
p = HornerMultivarPolynomial(coefficients, exponents, rectify_input=True,

compute_representation=True)

The factorisation computed by multivar_horner is p(x) = x1(x1(x1(1x2)+2x3)+3x2x3)+5
and requires 7 multiplications for every polynomial evaluation. The human readable represen-
tation of the polynomial can be accessed with:

print(p.representation)
# [#ops=7] p(x) = x_1 (x_1 (x_1 (1.0 x_2) + 2.0 x_3) + 3.0 x_2 x_3) + 5.0

It should be noted that the implemented factorisation procedure is coefficient-agnostic and
hence does not, for example, optimise multiplications with 1. This design choice has been made
in order to have the ability to change the coefficients of a computed polynomial representation
a posteriori.
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With the default settings a Horner factorisation is computed by recursively factorising with
respect to the factor most commonly used in all monomials. When no leaves of the resulting
binary “Horner factorisation tree” can be factorised any more, a “recipe” for evaluating the
polynomial is compiled. This recipe encodes all operations required to evaluate the polynomial
in numpy arrays (Walt, Colbert, & Varoquaux, 2011). This enables the use of functions just-
in-time compiled by numba (Lam, Pitrou, & Seibert, 2015), which allow the polynomial
evaluation to be computationally efficient. The just-in-time compiled functions are always
used, since a pure-Python polynomial evaluation would to some extent outweigh the benefits
of Horner factorisation representations.
multivar_horner allows to evaluate the polynomial p at a point x:

x = [-2.0, 3.0, 1.0]
p_x = p.eval(x, rectify_input=True) # -29.0

Degrees of multivariate polynomials

Figure 1: The number of coefficients of fully occupied polynomials of different degrees in 3 dimen-
sions.

In contrast to the one-dimensional case, there are several concepts of degree for polynomials
in multiple dimensions. Following the notation of (Trefethen, 2017) the usual notion of degree
of a polynomial, the total degree, is the maximal sum of exponents of all monomials. This
is equal to the maximal l1-norm of all exponent vectors of the monomials. Accordingly the
euclidean degree is the maximal l2-norm and the maximal degree is the maximal l∞-norm of
all exponent vectors. Please refer to (Trefethen, 2017) for precise definitions.
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A polynomial is called fully occupied with respect to a certain degree if all possible monomials
having a smaller or equal degree are present. The occupancy of a polynomial can then be
defined as the number of monomials present, relative to the fully-occupied polynomial of this
degree. A fully-occupied polynomial hence has an occupancy of 1.
The number of coefficients (equal to the number of possible monomials) in multiple dimensions
highly depends on the type of degree a polynomial has (cf. Figure 1). This effect intensifies
as the dimensionality grows.

Benchmarks

Figure 2: Numerical error of evaluating randomly-generated polynomials of varying sizes.

For benchmarking our method the following procedure is used: In order to sample polynomials
with uniformly random occupancy, the probability of monomials being present is picked ran-
domly. For a fixed maximal degree n in m dimensions there are (n+ 1)m possible exponent
vectors corresponding to monomials. Each of these monomials is included with the chosen
probability.
Five polynomials were sampled randomly for each maximal degree up to 7 and dimensionality
up to 7. In order to compute the numerical error, each polynomial is evaluated at a point
sampled uniformly from [−1; 1]m with the different methods. The polynomial evaluation
algorithms use 64-bit floating point numbers, whereas the ground truth is computed with
128-bit accuracy in order to avoid numerical errors in the ground truth value. To obtain more
representative results, the numerical error is averaged over 100 runs with uniformly-random
coefficients each in the range [−1; 1]. All errors are displayed relative to the ground truth.
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Figure 3: Numerical error of evaluating randomly generated polynomials in canonical form relative
to the Horner factorisation.

Note that even though the original monomials are not actually present in a Horner factorisation,
the number of coefficients is nonetheless identical to the number of coefficients of its canonical
form. With increasing size in terms of the number of included coefficients, the numerical error
of both the canonical form and the Horner factorisation found by multivar_horner grow
exponentially (cf. Figure 2). However, in comparison to the canonical form, the Horner
factorisation is more numerically stable, as visualised in Figure 3. The numerical stability of
Horner factorisations has theoretically been shown in (Ceberio & Kreinovich, 2004; Peña &
Sauer, 2000a, 2000b).
Even though the number of operations required for evaluating the polynomials grows expo-
nentially with their size, irrespective of the considered representation, Figure 4 shows that the
rate of growth is lower for the Horner factorisation. As a result, the Horner factorisations are
computationally easier to evaluate.
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Figure 4: Number of operations required to evaluate randomly generated polynomials.

Related work

This package has been created due to the recent advances in multivariate polynomial inter-
polation (Hecht et al., 2018; Hecht & Sbalzarini, 2018). High-dimensional interpolants of
large degrees create the demand for evaluating multivariate polynomials in a computation-
ally efficient and numerically stable way. These advances enable modeling the behaviour of
(physical) systems with polynomials. Obtaining an analytical, multidimensional and nonlinear
representation of a system opens up many possibilities. With so-called “interpolation response
surface methods” (Michelfeit, 2019), for example, a system can be analysed and optimised.
The commercial software Maple offers the ability to compute multivariate Horner factorisa-
tions. However multivar_horner is, as far as we are aware, the first open-source imple-
mentation of a multivariate Horner scheme. The Wolfram Mathematica framework supports
univariate Horner factorisations. The Julia package StaticPolynomials has a functionality
similar to multivar_horner, but does not support computing Horner factorisations.
NumPy (Walt et al., 2011) offers functionality to represent and manipulate polynomials of
dimensionality up to 3. SymPy offers the dedicated module sympy.polys for symbolically
operating with polynomials. As stated in the documentation, SymPy does not use Horner
factorisations for polynomial evaluation in the multivariate case. Sage covers the algebraic
side of polynomials.
multivar_horner has no functions to directly interoperate with other software packages.
The generality of the required input parameters (coefficients and exponents), however, still
ensures the compatibility with other approaches. It is, for example, easy to manipulate a
polynomial with other libraries and then compute the Horner factorisation representation of
the resulting output polynomial with multivar_horner afterwards, by simply transferring
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coefficients and exponents. Some intermediate operations to convert the parameters into the
required format might be necessary.

Further reading

The documentation of the package is hosted on readthedocs.io. Any bugs or feature requests
can be filed on GitHub (Michelfeit, 2018). The contribution guidelines can be found there as
well.
The underlying basic mathematical concepts are explained in numerical analysis textbooks like
(Neumaier, 2001). The Horner scheme at the core of multivar_horner has been theoretically
outlined in (Ceberio & Kreinovich, 2004).
Instead of using a heuristic to choose the next factor, one could instead search over all
possible Horner factorisations in order to arrive at a minimal factorisation. The number of
possible factorisations, however, increases exponentially with the degree and dimensionality of
a polynomial (number of monomials). One possibility to avoid computing each factorisation is
to employ a version of A-star search (Hart, Nilsson, & Raphael, 1968) adapted for factorisation
trees. multivar_horner also implements this approach, which is similar to the branch-and-
bound method suggested in (Kojima, 2008, ch. 3.1).
(Carnicer & Gasca, 1990) shows how factorisation trees can be used to evaluate multivariate
polynomials and their derivatives. In (Kuipers, Plaat, Vermaseren, & Herik, 2013) Monte
Carlo tree search has been used to find more performant factorisations than with greedy
heuristics. Other beneficial representations of polynomials are specified, for example, in (Lee,
2013) and (Leiserson et al., 2010).
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