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Summary

In computer science, a preprocessor (or macro processor) is a tool that programatically alters
its input, typically on the basis of inline annotations, to produce data that serves as input for
another program. Preprocessors are used in software development and document processing
workflows to translate or extend programming or markup languages, as well as for conditional
or pattern-based generation of source code and text. Early preprocessors were relatively simple
string replacement tools that were tied to specific programming languages and application
domains, and while these have since given rise to more powerful, general-purpose tools, these
often require the user to learn and use complex macro languages with their own syntactic
conventions. In this paper, we present GPP, an extensible, general-purpose preprocessor
whose principal advantage is that its syntax and behaviour can be customized to suit any given
preprocessing task. This makes GPP of particular benefit to research applications, where it
can be easily adapted for use with novel markup, programming, and control languages.

Background

Preprocessors date back to the mid-1950s, when they were used to extend individual as-
sembly languages with constructs that would later be found in high-level programming lan-
guages (Layzell, 1985). These languages, in turn, fostered the development of yet more
special-purpose preprocessors aimed at providing even higher-level constructs, such as condi-
tional loops and other control structures in FORTRAN (Meissner, 1975) and COBOL (Triance,
1980). The need for generalized, language-independent tools was eventually recognized (McIl-
roy, 1960), leading to the development of general-purpose preprocessors such as GPM (Stra-
chey, 1965) and ML/I (Brown, 1967).
By the end of the 1960s, preprocessors had attracted a considerable amount of attention,
by computing theorists and practitioners alike, and their use in software engineering had
expanded beyond the augmentation and adaptation of programming languages. A survey
paper by Brown (1969) identified four broad application areas: language extension, systematic
searching and editing of source code, translation between programming languages, and code
generation (i.e., simplifying the writing of highly repetitive code, parameterizing a program
by substituting compile-time constants, or producing variants of a program by conditionally
including certain statements or modules). While the first three of these application areas have
largely been rendered obsolete by today’s integrated development environments and expressive,
feature-rich programming languages, implementing software variability with language-specific
and general-purpose preprocessors remains commonplace (Apel, Batory, Kästner, & Saake,
2013; Kästner, Apel, Thüm, & Saake, 2012).
Text processing became another main application area for preprocessors, in particular to gen-
erate documents on the basis of user-specified conditions or patterns, and to convert be-
tween document markup languages (Walden, 2014). The earliest such uses were ad-hoc
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repurposings of programming language–specific preprocessors to operate on human-readable
texts (Keese, 1964; Stallman & Weinberg, 2020); these were soon supplanted by text-specific
macro languages such as TRAC (Mooers & Deutsch, 1965), which were positioned as tools
for stenographers and other writing professionals. More recently it has been common to use
general-purpose preprocessors (Mailund, 2019; Pesch, 1992).

Statement of Need

Criticism of preprocessors commonly focuses on the idiosyncratic languages they employ for
their own built-in directives and for users to define and invoke macros. The languages of
early preprocessors were derided as “clumsy and restrictive” (Layzell, 1985) and “hard to
read” (Brown, 1969), and even modern preprocessors are sometimes attacked for relying on
“the clumsiness of a separate language of limited expressiveness” (Ernst, Badros, & Notkin,
2002) or, at the other extreme, for being overly complicated, quirky, opaque, or hard to learn,
even for experienced programmers and markup users (Ernst et al., 2002; Paddon, 1993; Pesch,
1992).
Our general-purpose preprocessor, GPP, avoids these issues by providing a lightweight but
flexible macro language whose syntax can be customized by the user. The tool’s built-in
presets allow its directives to be made to resemble those of many popular languages, including
HTML and LATEX. This greatly reduces the learning curve for GPP when it is used with these
languages, eliminates the cognitive burden of repeatedly “mode switching” between source and
preprocessor syntax when reading or composing, and allows existing syntax highlighters and
other tools to process GPP directives with little or no further configuration. Furthermore, users
are not limited to using these presets, but can fully define their own syntax for GPP directives
and macros. This makes GPP particularly attractive for use in research and development,
where its syntax can be readily adapted to match bespoke programming and markup languages.
GPP’s independence from any one programming or markup language makes it more versatile
than the C Preprocessor, which was formerly “abused” as a general text processor and is still
sometimes (inappropriately) used for non-C applications (Stallman & Weinberg, 2020). While
GPP is less powerful than m4 (Seindal, Pinard, Vaughan, & Blake, 2016), it is arguably more
flexible, and supports all the basic operations expected of a modern, high-level preprocessing
system, including conditional tests, arithmetic evaluation, and POSIX-style wildcard matching
(“globbing”). In addition to macros, GPP understands comments and strings, whose syntax
and behaviour can also be widely customized to fit any particular purpose.

GPP in research

GPP has already been integrated into a number of third-party projects in basic and applied
research. These include the following:

• The Waveform Definition Language (WDL) is Caltech Optical Observatories’ C-like lan-
guage for programming astronomical research cameras. WDL uses GPP to preprocess
configuration files containing signals and parameters specific to the camera controllers,
flags setting the devices’ operating modes and image properties, and timing rules. Ac-
cording to the developers, GPP was chosen over the C Preprocessor “for added flexibility
and to avoid some C-like limitations” (Kaye, Smith, Hale, & Mao, 2017).

• XSB is a research-oriented, commercial-grade logic programming system and Prolog
compiler. The developers chose to make GPP XSB’s default preprocessor because it
“maintains a high degree of compatibility with the C preprocessor, but is more suitable
for processing Prolog programs” (Swift et al., 2017).
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• C-Control Pro is a family of electronic microcontrollers produced by Conrad Electronic;
they are specifically designed for industrial and automotive applications. The official
software development kit includes a modified version of GPP for use with the products’
BASIC and Compact-C programming languages (Schirm & Sprenger, 2007).

• SUS is a tool that allows system administrators to exercise fine-grained control over
how users can run commands with elevated privileges. It has a sophisticated control file
syntax that is preprocessed with GPP (Gray, 2001).

Apart from these uses, GPP is occasionally cited as previous or related work in scholarly
publications on metaprogramming or compile-time variability of software (Apel et al., 2013;
Baxter & Mehlich, 2001; Behringer, 2017; Blendinger, 2010; Dreiling, 2010; Kästner et al.,
2012; Lotoreychik & Shopyrin, 2006; Zmiry, 2016).
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