
GPP, the Generic Preprocessor
Tristan Miller1 and Denis Auroux2

1 Austrian Research Institute for Artificial Intelligence 2 Department of Mathematics, Harvard
University

DOI: 10.21105/joss.02400

Software
• Review
• Repository
• Archive

Editor: George K. Thiruvathukal

Reviewers:
• @Smattr
• @drj11

Submitted: 28 May 2020
Published: 28 July 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

In computer science, a preprocessor (or macro processor) is a tool that programatically alters
its input, typically on the basis of inline annotations, to produce data that serves as input for
another program. Preprocessors are used in software development and document processing
workflows to translate or extend programming or markup languages, as well as for conditional
or pattern-based generation of source code and text. Early preprocessors were relatively simple
string replacement tools that were tied to specific programming languages and application
domains, and while these have since given rise to more powerful, general-purpose tools, these
often require the user to learn and use complex macro languages with their own syntactic
conventions. In this paper, we present GPP, an extensible, general-purpose preprocessor
whose principal advantage is that its syntax and behaviour can be customized to suit any given
preprocessing task. This makes GPP of particular benefit to research applications, where it
can be easily adapted for use with novel markup, programming, and control languages.

Background

Preprocessors date back to the mid-1950s, when they were used to extend individual as-
sembly languages with constructs that would later be found in high-level programming lan-
guages (Layzell, 1985). These languages, in turn, fostered the development of yet more
special-purpose preprocessors aimed at providing even higher-level constructs, such as condi-
tional loops and other control structures in FORTRAN (Meissner, 1975) and COBOL (Triance,
1980). The need for generalized, language-independent tools was eventually recognized (McIl-
roy, 1960), leading to the development of general-purpose preprocessors such as GPM (Stra-
chey, 1965) and ML/I (Brown, 1967).
By the end of the 1960s, preprocessors had attracted a considerable amount of attention,
by computing theorists and practitioners alike, and their use in software engineering had
expanded beyond the augmentation and adaptation of programming languages. A survey
paper by Brown (1969) identified four broad application areas: language extension, systematic
searching and editing of source code, translation between programming languages, and code
generation (i.e., simplifying the writing of highly repetitive code, parameterizing a program
by substituting compile-time constants, or producing variants of a program by conditionally
including certain statements or modules). While the first three of these application areas have
largely been rendered obsolete by today’s integrated development environments and expressive,
feature-rich programming languages, implementing software variability with language-specific
and general-purpose preprocessors remains commonplace (Apel, Batory, Kästner, & Saake,
2013; Kästner, Apel, Thüm, & Saake, 2012).
Text processing became another main application area for preprocessors, in particular to gen-
erate documents on the basis of user-specified conditions or patterns, and to convert be-
tween document markup languages (Walden, 2014). The earliest such uses were ad-hoc

Miller et al., (2020). GPP, the Generic Preprocessor. Journal of Open Source Software, 5(51), 2400. https://doi.org/10.21105/joss.02400 1

https://doi.org/10.21105/joss.02400
https://github.com/openjournals/joss-reviews/issues/2400
https://github.com/logological/gpp.git
https://doi.org/10.5281/zenodo.3961322
https://luc.edu/cs/people/ftfaculty/gkt.shtml
https://github.com/Smattr
https://github.com/drj11
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02400


repurposings of programming language–specific preprocessors to operate on human-readable
texts (Keese, 1964; Stallman & Weinberg, 2020); these were soon supplanted by text-specific
macro languages such as TRAC (Mooers & Deutsch, 1965), which were positioned as tools
for stenographers and other writing professionals. More recently it has been common to use
general-purpose preprocessors (Mailund, 2019; Pesch, 1992).

Statement of Need

Criticism of preprocessors commonly focuses on the idiosyncratic languages they employ for
their own built-in directives and for users to define and invoke macros. The languages of
early preprocessors were derided as “clumsy and restrictive” (Layzell, 1985) and “hard to
read” (Brown, 1969), and even modern preprocessors are sometimes attacked for relying on
“the clumsiness of a separate language of limited expressiveness” (Ernst, Badros, & Notkin,
2002) or, at the other extreme, for being overly complicated, quirky, opaque, or hard to learn,
even for experienced programmers and markup users (Ernst et al., 2002; Paddon, 1993; Pesch,
1992).
Our general-purpose preprocessor, GPP, avoids these issues by providing a lightweight but
flexible macro language whose syntax can be customized by the user. The tool’s built-in
presets allow its directives to be made to resemble those of many popular languages, including
HTML and LATEX. This greatly reduces the learning curve for GPP when it is used with these
languages, eliminates the cognitive burden of repeatedly “mode switching” between source and
preprocessor syntax when reading or composing, and allows existing syntax highlighters and
other tools to process GPP directives with little or no further configuration. Furthermore, users
are not limited to using these presets, but can fully define their own syntax for GPP directives
and macros. This makes GPP particularly attractive for use in research and development,
where its syntax can be readily adapted to match bespoke programming and markup languages.
GPP’s independence from any one programming or markup language makes it more versatile
than the C Preprocessor, which was formerly “abused” as a general text processor and is still
sometimes (inappropriately) used for non-C applications (Stallman & Weinberg, 2020). While
GPP is less powerful than m4 (Seindal, Pinard, Vaughan, & Blake, 2016), it is arguably more
flexible, and supports all the basic operations expected of a modern, high-level preprocessing
system, including conditional tests, arithmetic evaluation, and POSIX-style wildcard matching
(“globbing”). In addition to macros, GPP understands comments and strings, whose syntax
and behaviour can also be widely customized to fit any particular purpose.

GPP in research

GPP has already been integrated into a number of third-party projects in basic and applied
research. These include the following:

• The Waveform Definition Language (WDL) is Caltech Optical Observatories’ C-like lan-
guage for programming astronomical research cameras. WDL uses GPP to preprocess
configuration files containing signals and parameters specific to the camera controllers,
flags setting the devices’ operating modes and image properties, and timing rules. Ac-
cording to the developers, GPP was chosen over the C Preprocessor “for added flexibility
and to avoid some C-like limitations” (Kaye, Smith, Hale, & Mao, 2017).

• XSB is a research-oriented, commercial-grade logic programming system and Prolog
compiler. The developers chose to make GPP XSB’s default preprocessor because it
“maintains a high degree of compatibility with the C preprocessor, but is more suitable
for processing Prolog programs” (Swift et al., 2017).

Miller et al., (2020). GPP, the Generic Preprocessor. Journal of Open Source Software, 5(51), 2400. https://doi.org/10.21105/joss.02400 2

https://doi.org/10.21105/joss.02400


• C-Control Pro is a family of electronic microcontrollers produced by Conrad Electronic;
they are specifically designed for industrial and automotive applications. The official
software development kit includes a modified version of GPP for use with the products’
BASIC and Compact-C programming languages (Schirm & Sprenger, 2007).

• SUS is a tool that allows system administrators to exercise fine-grained control over
how users can run commands with elevated privileges. It has a sophisticated control file
syntax that is preprocessed with GPP (Gray, 2001).

Apart from these uses, GPP is occasionally cited as previous or related work in scholarly
publications on metaprogramming or compile-time variability of software (Apel et al., 2013;
Baxter & Mehlich, 2001; Behringer, 2017; Blendinger, 2010; Dreiling, 2010; Kästner et al.,
2012; Lotoreychik & Shopyrin, 2006; Zmiry, 2016).

Acknowledgments

Tristan Miller is supported by the Austrian Science Fund (FWF) under project M 2625-N31.
Denis Auroux is partially supported by NSF grant DMS-1937869 and by Simons Foundation
grant #385573. The Austrian Research Institute for Artificial Intelligence is supported by the
Austrian Federal Ministry for Science, Research and Economy.

References

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013). Classic, tool-driven variability mech-
anisms. In Feature-oriented software product lines. Berlin/Heidelberg: Springer-Verlag.
doi:10.1007/978-3-642-37521-7_5

Baxter, I. D., & Mehlich, M. (2001). Preprocessor conditional removal by simple partial
evaluation. In Proceedings of the 8th Working Conference on Reverse Engineering (pp.
281–290). IEEE. doi:10.1109/WCRE.2001.957833

Behringer, B. (2017, July). Projectional editing of software product lines – The PEoPL
approach (PhD thesis). Faculty of Sciences, Technology; Communication, Université de
Luxembourg.

Blendinger, F. (2010, August). A filesystem-based approach to support product line de-
velopment with editable views (Diploma Thesis). Department of Computer Sciences 4,
Friedrich-Alexander University Erlangen-Nuremberg.

Brown, P. J. (1967). The ML/I macro processor. Communications of the ACM, 10(10),
618–623. doi:10.1145/363717.363746

Brown, P. J. (1969). A survey of macro processors. Annual Review in Automatic Program-
ming, 6, 37–88. doi:10.1016/0066-4138(69)90001-9

Dreiling, A. (2010, July). Feature Mining: Semiautomatische Transition von (Alt-)Systemen
zu Software-Produktlinien (Diploma thesis). Fakultät für Informatik, Institut für Technis-
che und Betriebliche Informationssysteme, Otto-von-Guericke-Universität Magdeburg.

Ernst, M. D., Badros, G. J., & Notkin, D. (2002). An empirical analysis of C Preprocessor
use. IEEE Transactions on Software Engineering, 28(12), 1146–1170. doi:10.1109/TSE.
2002.1158288

Gray, P. D. (2001). SUS – An object reference model for distributing UNIX super user
privileges. In Proceedings of the LISA 2001 15th Systems Administration Conference (pp.
15–18). The USENIX Association.

Miller et al., (2020). GPP, the Generic Preprocessor. Journal of Open Source Software, 5(51), 2400. https://doi.org/10.21105/joss.02400 3

https://doi.org/10.1007/978-3-642-37521-7_5
https://doi.org/10.1109/WCRE.2001.957833
https://doi.org/10.1145/363717.363746
https://doi.org/10.1016/0066-4138(69)90001-9
https://doi.org/10.1109/TSE.2002.1158288
https://doi.org/10.1109/TSE.2002.1158288
https://doi.org/10.21105/joss.02400


Kaye, S., Smith, R., Hale, D., & Mao, P. (2017). Waveform Definition Language. Pasadena,
CA: Caltech Optical Observatories.

Kästner, C., Apel, S., Thüm, T., & Saake, G. (2012). Type checking annotation-based product
lines. ACM Transactions on Software Engineering and Methodology, 21(3), 14:1–14:39.
doi:10.1145/2211616.2211617

Keese, W. M., Jr. (1964). A note on automatic generation of documentation by macro
assemblers (Technical memorandum No. TM-64-1031-1). Washington, DC: Bellcom, Inc.

Layzell, P. J. (1985). The history of macro processors in programming language extensibility.
The Computer Journal, 28(1), 29–33. doi:10.1093/comjnl/28.1.29

Lotoreychik, V. Y., & Shopyrin, D. G. (2006). Metaprogrammirovaniye na osnove tekstovogo
preprotsessora [Text preprocessor–based metaprogramming]. Nauchno-Tehnicheskii Vest-
nik Informatsionnykh Tekhnologii, Mekhaniki i Optiki [Scientific and Technical Journal of
Information Technologies, Mechanics and Optics], 6(2), 57–65.

Mailund, T. (2019). Preprocessing. In Introducing Markdown and Pandoc: Using
markup language and document converter. Berkeley, CA: Apress. doi:10.1007/
978-1-4842-5149-2_10

McIlroy, M. D. (1960). Macro instruction extensions of compiler languages. Communications
of the ACM, 3(4), 214–220. doi:10.1145/367177.367223

Meissner, L. P. (1975). On extending Fortran control structures to facilitate structured pro-
gramming. SIGPLAN Notices, 10(9), 19–30. doi:10.1145/987316.987320

Mooers, C. N., & Deutsch, L. P. (1965). TRAC, a text-handling language. In L. Winner
(Ed.), ACM ’65: Proceedings of the 20th National Conference (pp. 229–246). New York:
Association for Computing Machinery. doi:10.1145/800197.806048

Paddon, M. (1993). Shake: A portable tool for generating Makefiles. In AUUG ’93 Conference
proceedings (pp. 145–156). Kensington, NSW, Australia: AUUG Inc.

Pesch, R. H. (1992). Configurable manuals. In Conference record on Crossing Frontiers (pp.
776–780). doi:10.1109/IPCC.1992.673146

Schirm, R., & Sprenger, P. (2007). Der Preprozessor. In Messen, Steuern und Regeln mit
C-Control Pro: Praxisanwendungen, Schaltungstechnik und Programmierung. Poing, Ger-
many: Franzis. ISBN: 978-3-7723-4097-0

Seindal, R., Pinard, F., Vaughan, G. V., & Blake, E. (2016). GNU m4, version 1.4.18. Free
Software Foundation.

Stallman, R. M., & Weinberg, Z. (2020). Overview. In The C Preprocessor (GCC 10.1.0.).
Free Software Foundation.

Strachey, C. (1965). A general purpose macrogenerator. The Computer Journal, 8(3), 225–
241. doi:10.1093/comjnl/8.3.225

Swift, T., Warren, D. S., Sagonas, K., Freire, J., Rao, P., Cui, B., Johnson, E., et al. (2017).
The XSB System, version 3.8.x, volume 1: Programmer’s manual.

Triance, J. M. (1980). Structured programming in COBOL—the current options. The Com-
puter Journal, 23(3), 194–200. doi:10.1093/comjnl/23.3.194

Walden, D. (2014). Macro memories, 1964–2013. TUGboat: The Communications of the
TeX Users Group, 35(1), 99–110.

Zmiry, I. E. (2016, April). Lola 0.064: A programming language for augmenting programming
languages (Master’s thesis). Technion – Israel Institute of Technology.

Miller et al., (2020). GPP, the Generic Preprocessor. Journal of Open Source Software, 5(51), 2400. https://doi.org/10.21105/joss.02400 4

https://doi.org/10.1145/2211616.2211617
https://doi.org/10.1093/comjnl/28.1.29
https://doi.org/10.1007/978-1-4842-5149-2_10
https://doi.org/10.1007/978-1-4842-5149-2_10
https://doi.org/10.1145/367177.367223
https://doi.org/10.1145/987316.987320
https://doi.org/10.1145/800197.806048
https://doi.org/10.1109/IPCC.1992.673146
https://worldcat.org/isbn/978-3-7723-4097-0
https://doi.org/10.1093/comjnl/8.3.225
https://doi.org/10.1093/comjnl/23.3.194
https://doi.org/10.21105/joss.02400

	Summary
	Background
	Statement of Need
	GPP in research
	Acknowledgments
	References

