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Summary

The term segmentation refers to the division of a data series into segments. In this paper,
segments refer to a contiguous time series which is a subset of another time series (Bouchard,
2006). ldentifying these segments requires a reference series to be found in the larger series,
which can be an exact copy or an approximation. When an approximation of the desired
segment is used, the metric and method for identifying similarity of all subsets are essential
to achieving the desired result. Additionally, multiple references may be desired to further
describe the aspects of segment similarity, some of which may be more important than others.

Segmenting human motion is a topic studied in various fields such as robotics (e.g., hu-
manoids), biomechanics, and computer graphics (e.g., gaming and animation). In the human
movement sciences, segmentation is often performed as the labeling of specific events, such
as the components of a gait cycle, for analysis and interpretation of the data within these
labeled bounds. Subjectively defining what a movement or a phase of a movement is can
be particularly difficult due to variations in what one may define as a single movement. As
such, the points at which the movement or phases of a movement starts and ends can be
ambiguous. The averaging of multiple features (e.g., marker trajectories, joint angles, or
other information derived from the data) of a movement or even multiple movements (e.g.,
multiple marker trajectories from multiple observation sets) allows for tolerance to some in-
dividual features failing to provide an expected characteristic (e.g., a signal above or below a
threshold value from a force plate) that may normally be relied upon for identifying an event.
Defining weights of individual features, with either algorithmic approaches or through expert
knowledge, further facilitates segmentation of similar movements.

With feature-rich data such as multiple marker trajectories from motion capture, the reduction
of meaningful features is important for segmentation performance (Bouchard & Badler, 2015).
The use of marker trajectory and ground reaction force, without computing kinematics, has
been shown to be sufficient in movement segmentation tasks (Lin, Bonnet, Joukov, Venture,
& Kulic, 2016). Unique feature creation, extraction, and storage can be used to addition-
ally index databases for fast movement-based time-series data retrieval (Kapadia, Chiang,
Thomas, Badler, & Kider Jr, 2013). Subseries searching of databases has often been per-
formed with similarity metrics, each with their own individual downfalls, e.g., Longest Common
Subseries (LCSS), Euclidean Distance (ED), and Dynamic Time Warping (DTW) (Vlachos,
Hadjieleftheriou, Gunopulos, & Keogh, 2003). Discrete Fourier Transformation (DFT) has
also been used as a method for improving the efficiency of windowed correlations (Zhu &
Shasha, 2002). Data reduction techniques for optimization can also be used in windowed
correlations of generic time-series data (Cole, Shasha, & Zhao, 2005).

Peak detection has been used to identify gait events through the inference of cyclic motion and
reducing reliance on physical meanings of the signal by searching for the assumed cyclic pattern

Schwartz et al., (2020). segld: A Python package for Automated segmentation of one-dimensional (1D) data. Journal of Open Source 1
Software, 5(52), 2404. https://doi.org/10.21105/joss.02404


https://doi.org/10.21105/joss.02404
https://github.com/openjournals/joss-reviews/issues/2404
https://github.com/cadop/seg1d
https://doi.org/10.5281/zenodo.3979649
https://github.com/trallard
https://github.com/AKuederle
https://github.com/ejhigson
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02404

The Journal of Open Source Software

rather than a given threshold value or calculated joint angle (Jiang, Wang, Kyrarini, & Graser,
2017). Peak detection from cross-correlated data has been used for gait event detection in
accelerometry data (Yoneyama, Kurihara, Watanabe, & Mitoma, 2013). Alternative methods
for segmenting data have used physical devices to act as switches on foot contact (Agostini,
Balestra, & Knaflitz, 2013). Most recently, deep neural networks have been used to predict
foot contact but require a large amount (i.e., thousands of trials) of training data (Kidzinski,
Delp, & Schwartz, 2019). Using DTW, (Sarsfield et al., 2019) was able to identify movements
in realtime with a single reference segment. Allowing both single and multiple reference
segments, as well as multiple features and optional weights, the segmentation of various data
is more practical in a single package.

Statement of Need

Subsequence identification and similarity between a reference(s) and target data items is a
commonly desired task done both manually and automatically in a variety of fields. The
ability to further automate and create reliable, consistent results, is of importance for many
data processing related tasks. For example, in typical motion capture sessions of walking gait
in a lab, embedded force plates provide high fidelity measurements for foot-strike and toe-off.
However, the cycles before and after this event are often discarded. By using a collection
of features from a known segment (i.e., the cycle over the force-plate), similar sequences
within a trial can be found and used for the study. Furthermore, some movements are not so
well defined with these external sensing tools, and rather a template movement selected by
a human is the most reasonable way to identify the sequence of data describing a particular
motion.

segld is an open-source Python package for the automated segmentation and extraction of
time series data using one or more reference sequences. The segmentation process allows
users to apply various methods and parameters for the process through weighted reference
features in a rolling correlation size-varying window of any scale below the length of the
targeted data. Correlations can be averaged across the references, and a peak detection
algorithm finds individual segments. Non-overlapping segments are identified, and a clustering
algorithm groups the most similar subsequence movements within the target. The package
was developed for movement sciences but can be useful to anyone interested in extracting
correlated subsequences from a dataset.
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Figure 1: Sample segments in a timeseries from a reference
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