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Background

An atmospheric river (AR) in the field of meteorology/climatology refers to enhanced water
vapor content in the lower troposphere. The term was coined as an analogy to terrestrial
rivers in a sense that when viewed from satellite imagery or large scale atmospheric observa-
tion, they appear as narrow and elongated vapor filaments, representing transient intensified
horizontal moisture fluxes (e.g., Gimeno et al., 2014; Dettinger, 2011). A typical atmospheric
river can carry 7-15 times the water in the Mississippi River (Ralph et al., 2011), and at any
time in winter, there are four to five such systems in the Northern Hemisphere alone (Zhu
& Newell, 1998), accounting for 80-90% of the total north-south integrated vapor transport
(Guan & Waliser, 2015; Zhu & Newell, 1998). Its dual hydrological role, both as a fresh
water source for some water-stressed areas (Dettinger, 2011, 2013; Rutz & Steenburgh, 2012)
and as a potential trigger for floods (Lavers et al., 2012; Lavers & Villarini, 2013; Moore
et al., 2012; Neiman et al., 2008), has granted it increasing attention among the research
community. Their long-term change in a warming climate also stands as a pressing research
question. However, an important prerequisite to answer such questions is a robust and consis-
tent detection method. As meteorologists and climatologists often deal with observational or
simulation data in large sizes, an algorithmic method can ensure better efficiency, consistency
and objectivity compared with human identification.
In many existing applications, a magnitude thresholding approach is used. For instance, Ralph
et al. (2004), Neiman et al. (2008), Hagos et al. (2015) and Dettinger (2011) identified
ARs by first locating regions where the Integrated Water Vapor (IWV) is greater than 20 mm.
A 250 kg/(m · s) threshold on the Integrated Vapor Transport (IVT) was used by Rutz et
al. (2014) and Rutz et al. (2015). However, an implicit assumption with this magnitude
thresholding approach is that the atmospheric moisture level stays unchanged throughout the
analysis period. Such an assumption may not be fully justifiable under a warming climate as
the atmospheric moisture level is expected to increase.

Summary

In this package we propose a suite of new detection/tracking algorithms to help solve the
above difficulties. Through a systematic analysis using seven years of reanalysis data (Dee
et al., 2011), we have found that the proposed detection algorithm has reduced sensitivity to
parameters (Xu et al., 2020b). Long-lived ARs spanning multiple days, having cross-continent
or cross-basin tracks, can be more reliably traced through their tropical/sub-tropical origins to
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high-latitude landfalls. As the research on ARs matures, new AR detection/tracking methods
are being developed, and the inter-comparisons of various AR detection/tracking methods
are carried out by, for instance, the Atmospheric River Tracking Method Intercomparison
Project (ARTMIP, Rutz et al., 2019; Shields et al., 2018). Using the terminology of ARTMIP
(Shields et al., 2018), the proposed method is a “tracking” (Lagrangian approach) type, with
length and shape geometrical requirements. It imposes no threshold on IVT/IWV, but instead
imposes absolute thresholds on the spatio-temporal scale of AR-like systems. The detected
ARs can be optionally time-stitched to identify coherent AR objects. We have performed
some systematic comparisons with two magnitude thresholding based AR detection methods
included in ARTMIP, and the proposed method displays better correspondence between North
Hemisphere AR tracks and storm tracks, better identification of the strong mid-latitude AR-
related moisture transports, and longer AR track durations. The detailed comparison analysis
is given in Xu et al. (2020a), and a more thorough description of the detection/tracking
methods is given in Xu et al. (2020b).
IPART is therefore intended for researchers and students who are interested in the field of
atmospheric river studies in the present day climate or future projections.
The IPART package includes a collection of Python functions and classes designed for an
analysis workflow covering the detection of ARs, the simplification of the AR’s geographical
location, to the subsequent tracking through time. The algorithms are implemented using
the Python programming language as a wrapper to some well-established numeric packages
including numpy, scikit-image and networkx etc. The input and output data use the
NetCDF format, an industry standard in the geoscience field. Optional graphical outputs
can also be saved, making it suitable for production usage and educational purposes as well.
A series of Jupyter notebooks are also included to help guide the users through the entire
workflow, and some example scripts are provided as templates to help the user quickly build
their own production scripts.

Example use case

The AR detection algorithm is inspired and modified from the image processing algorithm
Top-hap by Reconstruction (THR), which consists of subtracting from the original image a
greyscale reconstruction by dilation image (Vincent, 1993).
In the context of AR detection, the greyscale image in question is the non-negative IVT
distribution, denoted as I. The greyscale reconstruction by dilation component corresponds
to the background IVT component, denoted as δ(I). The difference I−δ(I) gives the transient
IVT component, from which AR candidates are searched. Figure 1 shows this decomposition
process. It could be seen that after this separation of background/transient components, it
becomes trivial to locate AR-like features.
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Figure 1: (a) The IVT field in kg/(m · s) at 1984-01-26 00:00 UTC over the North Hemisphere. (b)
the IVT reconstruction field (δ(I)) at the same time point. (c) the IVT anomaly field (I−δ(I)) from
the THR process at the same time point.

After locating ARs at various time steps, a single curve is sought for each AR as a summary
of its location. A directed planar graph model is used in this process, and weighted Dijkstra
path searching algorithm is used to find this “AR axis”. Further details can be found in the
documentation page.
Lastly, a modified Hausdorff distance definition is used as an inter-AR distance estimate, and
an exclusive nearest neighbor approach is used to link ARs at consecutive time points. Figure 2
shows an example of this tracking process.
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Figure 2: Locations of a track labelled “198424” found in year 1984. A color scheme of black to
yellow through purple indicates the evolution, where black curves represent the AR at earlier times
and yellow curves at later times.

External libraries used

Manipulation of the NetCDF data is achieved using the Python interface of the NetCDF
software (Unidata, 2020), numpy (Harris et al., 2020) and scipy (Virtanen et al., 2020)
packages. The detection process utilizes the image-processing package scikit-image (Walt
et al., 2014). The AR axis finding process utilizes the networkx package (Hagberg et al.,
2008). Generated outputs are further manipulated with pandas (McKinney, 2010) and dis-
played using matplotlib (Hunter, 2007).
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