The Journal of Open Source Software

DOI: 10.21105/joss.02408

Software
= Review @@
= Repository &7
= Archive &

Editor: Kakia Chatsiou %
Reviewers:

= Qbstabler
= @skadio

Submitted: 10 June 2020
Published: 09 November 2020

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

VRPy: A Python package for solving a range of vehicle
routing problems with a column generation approach

Romain Montagné!, David Torres Sanchez?, and Halvard Olsen
Storbugt?

1 EURODECISION 2 SINTEF Digital, Mathematics and Cybernetics

Introduction

The Vehicle Routing Problem (VRP) is amongst the most well known combinatorial opti-
mization problems. The most classical version of the VRP, the Capacitated VRP (CVRP)
(Laporte, 2007), can be described as follows. A fleet of vehicles with uniform capacity must
serve customers with known demand for a single commodity. The vehicles start and end their
routes at a common depot and each customer must be served by exactly one vehicle. The
objective is to assign a sequence of customers to each vehicle of the fleet (a route), minimizing
the total distance traveled, such that all customers are served and the total demand served
by each vehicle does not exceed its capacity. Note that the VRP generalises the well-known
traveling salesman problem (TSP) and is therefore computationally intractable.

Mathematicians have started tackling VRPs since 1959 (Dantzig & Ramser, 1959). Ever since,
algorithms and computational power have not stopped improving. State of the art techniques
include column generation approaches (Bramel & Simchi-Levi, 1997; Costa et al., 2019) on
which vrpy relies; more details are given hereafter.

vrpy is of interest to the operational research community and others (e.g., logisticians, supply
chain analysts) who wish to solve vehicle routing problems, and therefore has many obvious
applications in industry.

Features

vrpy is a Python package that offers an easy-to-use, unified APl for many variants of vehicle
routing problems including:

» the Capacitated VRP (CVRP) (Baldacci et al., 2010; Laporte, 2007),

= the CVRP with resource constraints (Laporte et al., 1985),

= the CVRP with time windows (Cordeau & Québec), 2000),

= the CVRP with simultaneous distribution and collection (Dell'Amico et al., 2006),
= the CVRP with pickups and deliveries (Desrosiers & Dumas, 1988),

= the CVRP with heterogeneous fleet (Choi & Tcha, 2007).

For each of these variants, it is possible to i/ set initial routes for the search (if one already has
a solution at hand and wishes to improve it) ii/ lock routes (if part of the solution is imposed
and must not be optimized) iii/ drop nodes (ignore a customer at the cost of a penalty).

vrpy is built upon the well known NetworkX library (Hagberg et al., 2008) and thus benefits
from a user friendly API, as shown in the following quick start example:

Montagné et al., (2020). VRPy: A Python package for solving a range of vehicle routing problems with a column generation approach. Journal 1
of Open Source Software, 5(55), 2408. https://doi.org/10.21105/joss.02408

https://doi.org/10.21105/joss.02408
https://github.com/openjournals/joss-reviews/issues/2408
https://github.com/Kuifje02/vrpy
https://doi.org/10.5281/zenodo.4248877
https://www.essex.ac.uk/people/chats23303/kakia-chatsiou
https://github.com/bstabler
https://github.com/skadio
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02408

The Journal of Open Source Software

from networkx import DiGraph
from vrpy import VehicleRoutingProblem

Define the network

= DiGraph()
.add_edge("Source",1,cost=1,time=2)
.add_edge ("Source",2,cost=2,time=1)
.add_edge(1,"Sink",cost=0,time=2)
.add_edge(2,"Sink",cost=2,time=3)
.add_edge(1,2,cost=1,time=1)
.add_edge(2,1,cost=1,time=1)

Q0000 H

**

Define the customers demands
.nodes[1] ["demand"] = 5
.nodes [2] ["demand"] = 4

Q@

Define the Vehicle Routing Problem
prob = VehicleRoutingProblem(G, load_capacity=10, duration=5)

Solve and display solution wvalue
prob.solve()

print (prob.best_value)

3

print (prob.best_routes)

{1: ["Source",2,1,"Sink"]}

State of the field

Although the VRP is a classical optimization problem, to our knowledge there is only one
dedicated package in the Python ecosystem that is able to solve such a range of VRP variants:
the excellent OR-Tools (Google) routing library (Perron & Furnon, 2019), released for the
first time in 2014. To be precise, the core algorithms are implemented in C++, but the library
provides a wrapper in Python. Popular and efficient, it is a reference for vrpy, both in terms
of features and performance. The current version of vrpy is able to handle the same variants
as OR-Tools (mentioned in the previous section).

Performance-wise, vrpy ambitions to be competitive with OR-Tools eventually, at least in
terms of solution quality. For the moment, benchmarks (available in the repository) for
the CVRP on the set of Augerat instances (Augerat, 1995) show promising results: in the
performance profile in Figure 1 below, one can see that nearly the same number of instances
are solved within 10 seconds with the same relative error with respect to the best known
solution (42% for vrpy, 44% for OR-Tools).

Montagné et al., (2020). VRPy: A Python package for solving a range of vehicle routing problems with a column generation approach. Journal 2
of Open Source Software, 5(55), 2408. https://doi.org/10.21105/joss.02408

https://doi.org/10.21105/joss.02408

The Journal of Open Source Software

CVRP (Augerat instances) - Peformance profile with a maximum run time of 10 sec

100 —e— ortools

—e— vrpy

80

60

40

% of data sets solved within gap

20

0 5 10 15 20 25 30

relative gap (%) with best known solution

Figure 1: CVRP Performance profile

We do not claim to outperform OR-Tools, but aim to have results of the same order of
magnitude as the package evolves, as there is still much room for improvement (see Section
Future Work below). On the other hand, we are confident that the user friendly and intuitive
API will help students, researchers and more generally the operational research community
solve instances of vehicle routing problems of small to medium size, perhaps more easily than
with the existing software.

py-ga-VRPTW is another library that is available but as mentioned by its authors, it is more
of an experimental project and its performances are rather poor. In particular, we were not
able to find feasible solutions for Solomon’s instances (Solomon, 1987) and therefore cannot
compare the two libraries. Also note that py-ga-VRPTW is designed to solve the VRPTW only,
that is, the VRP with time windows.

Mathematical background

vrpy solves vehicle routing problems with a column generation approach. The term column
generation refers to the fact that iteratively, routes (or columns) are generated with a pricing
problem, and fed to a master problem which selects the best routes among a pool such that
each vertex is serviced exactly once. Results from the master problem are then used to search
for new potential routes likely to improve the solution's cost, and so forth. This procedure is
illustrated in Figure 2 below:

Montagné et al., (2020). VRPy: A Python package for solving a range of vehicle routing problems with a column generation approach. Journal 3
of Open Source Software, 5(55), 2408. https://doi.org/10.21105/joss.02408

https://doi.org/10.21105/joss.02408

The Journal of Open Source Software

Find better route

RN

Route generation Route selection

S~ 7

Add new route to pool

Figure 2: Column Generation

The master problem is a set partitioning linear formulation and is solved with the open source
solver Clp from COIN-OR (Forrest et al., 2020), while the subproblem is a shortest elementary
path problem with resource constraints. It is solved with the help of the cspy library (Torres
Sanchez, 2020) which is specifically designed for such problems.

This column generation procedure is very generic, as for each of the featuring VRP variants,
the master problem is identical and partitions the customers into subsets (routes). It is the
subproblem (or pricing problem) that differs from one variant to another. More specifically,
each variant has its unique set of resources which must remain in a given interval. For example,
for the CVRP, a resource representing the vehicle's load is carried along the path and must
not exceed the vehicle capacity; for the CVRP with time windows, two extra resources must
be considered: the first one for time, and the second one for time window feasibility. The
reader may refer to (Costa et al., 2019) for more details on each of these variants and how
they are delt with within the framework of column generation.

Note that vrpy does not necessarily return an optimal solution. Indeed, once the pricing
problems fails to find a route with negative marginal cost, the master problem is solved as a
MIP. This price-and-branch strategy does not guarantee optimality. Note however that it can
be shown (Bramel & Simchi-Levi, 1997) that asymptotically, the relative error goes to zero
as the number of customers increases. To guarantee that an optimal solution is returned, the
column generation procedure should be embedded in a branch-and-bound scheme (branch-
and-price), which is beyond the scope of the current release, but part of the future work
considered.

Advanced Features

For more advanced users, there are different pricing strategies (approaches for solving sub-
problems), namely sparsification strategies (Dell’Amico et al., 2006; Santini et al., 2018), as
well as pre-pricing heuristics available that can lead to faster solutions. The heuristics imple-
mented include a greedy randomized heuristic (for the CVRP and the CVRP with resource
constraints) (Santini et al., 2018). Also, a diving heuristic (Sadykov et al., 2019) can be called
to explore part of the branch-and-price tree, instead of solving the restricted master problem
as a MIP.

Additionally, we have an experimental feature that uses Hyper-Heuristics for the dynamic se-
lection of pricing strategies. The approach ranks the best pricing strategies as the algorithm is
running and chooses according to selection functions based on (Ferreira et al., 2017; Sabar et
al., 2015). The selection criteria has been modified to include a combination of runtime, ob-
jective improvement, and currently active columns in the restricted master problem. Adaptive

Montagné et al., (2020). VRPy: A Python package for solving a range of vehicle routing problems with a column generation approach. Journal 4
of Open Source Software, 5(55), 2408. https://doi.org/10.21105/joss.02408

https://doi.org/10.21105/joss.02408

The Journal of Open Source Software

parameter settings found in (Drake et al., 2012) is used to balance exploration and exploita-
tion under stagnation. The main advantage is that selection is done as the program runs, and
is therefore more flexible compared to a predefined pricing strategy.

Future Work

There are many ways vrpy could be improved. To boost the run times, specific heuristics for
each variant could be implemented, e.g., Solomon's insertion algorithm (Solomon, 1987) for
the VRPTW. Second, the pricing problem is solved with cspy, which is quite recent (2019)
and is still being fine tuned. Also, currently, stabilization issues are delt with a basic interior
point based strategy which could be enhanced (Pessoa et al., 2018). Last but not least,
there are many cutting strategies in the literature (Costa et al., 2019) that have not been
implemented and which have proven to significantly reduce run times for such problems.

Acknowledgements

We would like to thank reviewers Ben Stabler and Serdar Kadioglu for their helpful and
constructive suggestions.

References

Augerat, P. (1995). Approche polyédrale du probléme de tournées de véhicules [PhD thesis].
Institut National Polytechnique de Grenoble-INPG.

Baldacci, R., Toth, P., & Vigo, D. (2010). Exact algorithms for routing problems under
vehicle capacity constraints. Annals of Operations Research, 175(1), 213-245. https:
//doi.org/10.1007 /s10479-009-0650-0

Bramel, J., & Simchi-Levi, D. (1997). Solving the vrp using a column generation approach. In
The logic of logistics (pp. 125-141). Springer. https://doi.org/10.1007 /0-387-22619-2__
16

Choi, E., & Tcha, D.-W. (2007). A column generation approach to the heterogeneous fleet
vehicle routing problem. Computers & Operations Research, 34(7), 2080-2095. https:
//doi.org/10.1016/].cor.2005.08.002

Cordeau, J.-F., & Québec), G. d'études et de recherche en analyse des décisions (Montréal.
(2000). The vrp with time windows. Groupe d'études et de recherche en analyse des déci-
sions Montréal. https://pdfs.semanticscholar.org/3aaa/al6ab53cf30c378fdb7c911fe0de39ee8997.
pdf

Costa, L., Contardo, C., & Desaulniers, G. (2019). Exact branch-price-and-cut algorithms for
vehicle routing. Transportation Science, 53(4), 946-985. https://doi.org/10.1287 /trsc.
2018.0878

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management
Science, 6(1), 80-91. https://doi.org/10.1287 /mnsc.6.1.80

Dell’ Amico, M., Righini, G., & Salani, M. (2006). A branch-and-price approach to the vehicle
routing problem with simultaneous distribution and collection. Transportation Science,
40(2), 235-247. https://doi.org/10.1287 /trsc.1050.0118

Desrosiers, J., & Dumas, Y. (1988). The shortest path problem for the construction of vehicle
routes with pick-up, delivery and time constraints. In Advances in optimization and control
(pp. 144-157). Springer. https://doi.org/10.1007 /978-3-642-46629-8_10

Montagné et al., (2020). VRPy: A Python package for solving a range of vehicle routing problems with a column generation approach. Journal 5
of Open Source Software, 5(55), 2408. https://doi.org/10.21105/joss.02408

https://doi.org/10.1007/s10479-009-0650-0
https://doi.org/10.1007/s10479-009-0650-0
https://doi.org/10.1007/0-387-22619-2_16
https://doi.org/10.1007/0-387-22619-2_16
https://doi.org/10.1016/j.cor.2005.08.002
https://doi.org/10.1016/j.cor.2005.08.002
https://pdfs.semanticscholar.org/3aaa/a16ab53cf30c378fdb7c911fe0de39ee8997.pdf
https://pdfs.semanticscholar.org/3aaa/a16ab53cf30c378fdb7c911fe0de39ee8997.pdf
https://doi.org/10.1287/trsc.2018.0878
https://doi.org/10.1287/trsc.2018.0878
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/trsc.1050.0118
https://doi.org/10.1007/978-3-642-46629-8_10
https://doi.org/10.21105/joss.02408

SS

The Journal of Open Source Software

Drake, J. H., Ozcan, E., & Burke, E. K. (2012). An improved choice function heuristic
selection for cross domain heuristic search. International Conference on Parallel Problem
Solving from Nature, 307-316. https://doi.org/10.1007/978-3-642-32964-7_31

Ferreira, A. S., Gongalves, R. A., & Pozo, A. (2017). A multi-armed bandit selection strategy
for hyper-heuristics. 2017 leee Congress on Evolutionary Computation (Cec), 525-532.
https://doi.org/10.1109/CEC.2017.7969356

Forrest, J. J., Vigerske, S., Ralphs, T., Hafer, L., jpfasano, Santos, H. G., Saltzman, M.,
h-i-gassmann, Kristjansson, B., & King, A. (2020). Coin-or/clp: Version 1.17.6 (re-
leases/1.17.6) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.3748677

Hagberg, A., Swart, P., & S Chult, D. (2008). Exploring network structure, dynamics, and
function using networkx. Los Alamos National Lab.(LANL), Los Alamos, NM (United
States). https://conference.scipy.org/proceedings/scipy2008/paper_2/full_text.pdf

Laporte, G. (2007). What you should know about the vehicle routing problem. Naval Research
Logistics (NRL), 54(8), 811-819. https://doi.org/10.1002/nav.20261

Laporte, G., Nobert, Y., & Desrochers, M. (1985). Optimal routing under capacity and
distance restrictions. Operations Research, 33(5), 1050-1073. https://doi.org/10.1287/
opre.33.5.1050

Perron, L., & Furnon, V. (2019). OR-Tools (Version 7.2). Google. https://developers.google.
com/optimization/

Pessoa, A., Sadykov, R., Uchoa, E., & Vanderbeck, F. (2018). Automation and combination
of linear-programming based stabilization techniques in column generation. INFORMS
Journal on Computing, 30(2), 339-360. https://doi.org/10.1287 /ijoc.2017.0784

Sabar, N. R., Zhang, X. J., & Song, A. (2015). A math-hyper-heuristic approach for large-
scale vehicle routing problems with time windows. 2015 leee Congress on Evolutionary
Computation (Cec), 830-837. https://doi.org/10.1109/CEC.2015.7256977

Sadykov, R., Vanderbeck, F., Pessoa, A., Tahiri, I., & Uchoa, E. (2019). Primal heuristics
for branch and price: The assets of diving methods. INFORMS Journal on Computing,
31(2), 251-267. https://doi.org/10.1287 /ijoc.2018.0822

Santini, A., Plum, C. E., & Ropke, S. (2018). A branch-and-price approach to the feeder
network design problem. European Journal of Operational Research, 264(2), 607-622.
https://doi.org/10.1016/j.ejor.2017.06.063

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35(2), 254-265. https://doi.org/10.1287 /opre.
35.2.254

Torres Sanchez, D. (2020). Cspy: A python package with a collection of algorithms for the
(resource) constrained shortest path problem. Journal of Open Source Software, 5(49),
1655. https://doi.org/10.21105/joss.01655

Montagné et al., (2020). VRPy: A Python package for solving a range of vehicle routing problems with a column generation approach. Journal 6
of Open Source Software, 5(55), 2408. https://doi.org/10.21105/joss.02408

https://doi.org/10.1007/978-3-642-32964-7_31
https://doi.org/10.1109/CEC.2017.7969356
https://doi.org/10.5281/zenodo.3748677
https://conference.scipy.org/proceedings/scipy2008/paper_2/full_text.pdf
https://doi.org/10.1002/nav.20261
https://doi.org/10.1287/opre.33.5.1050
https://doi.org/10.1287/opre.33.5.1050
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1287/ijoc.2017.0784
https://doi.org/10.1109/CEC.2015.7256977
https://doi.org/10.1287/ijoc.2018.0822
https://doi.org/10.1016/j.ejor.2017.06.063
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.21105/joss.01655
https://doi.org/10.21105/joss.02408

	Introduction
	Features
	State of the field
	Mathematical background
	Advanced Features
	Future Work
	Acknowledgements
	References

