
swiftsimio: A Python library for reading SWIFT data
Josh Borrow1 and Alexei Borrisov2

1 Institute for Computational Cosmology, Durham University 2 School of Physics and Astronomy,
University of Edinburgh

DOI: 10.21105/joss.02430

Software
• Review
• Repository
• Archive

Editor: Dan Foreman-Mackey
Reviewers:

• @dmentipl
• @mtremmel

Submitted: 26 June 2020
Published: 01 August 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

swiftsimio is a Python package for reading data created by the SWIFT (Schaller, Gonnet,
Chalk, & Draper, 2016) simulation code. SWIFT is designed to run cosmological hydrody-
namics simulations that produce petabytes of data, and swiftsimio leverages the custom
metadata that SWIFT produces to allow for chunked loading of the particle data and to enable
integration with unyt (Goldbaum, ZuHone, Turk, Kowalik, & Rosen, 2018).

Background

Cosmological galaxy formation simulations are used to track simulated galaxies across cosmic
time in an attempt to better understand the process of galaxy formation and evolution. As
time has progressed, so has the scale of these simulations. The state-of-the-art simulations
planned for the next decade, using codes like SWIFT, will generate petabytes of data thanks to
their use of hundreds of billions of particles. Analysing this data presents a unique challenge,
with the data reduction performed on either single compute nodes or on individual desktop
machines.
In the original EAGLE simulation (Schaye et al., 2015), just the co-ordinates of the gas particles
in a single snapshot used 82 Gb of storage space. State-of-the-art simulations are now using
at least 10 times as many particles as this, making an analysis pipeline that reads the whole
array each time expensive in the best case and infeasible in the worst. There are two useful
properties of this data: it is stored in the HDF5 format (The HDF Group, 1997), allowing for
easy slicing, and usually users are interested in a very small sub-set of the data, usually less
than 1%, at a time.
This requirement to load less than 1% of the data at a time is primarily due to the huge
dynamic range present in these simulations (Borrow, Bower, Draper, Gonnet, & Schaller,
2018). Although the simulation volume may be hundreds of megaparsecs on a side, the
objects that form under self-gravity are typically less than a few megaparsecs in diameter,
representing a very small proportion of the total volume. Users are usually interested in
using the particle data present in a few objects (selected using pre-computed data in ‘halo
catalogues’) at any given time.

Structure of a SWIFT snapshot

At pre-determined times during a SWIFT simulation, a full particle dump is performed. This
particle dump is stored in the HDF5 format, with arrays corresponding to different particle
properties. The overall structure of the file conforms to the Gadget-2 specification (Springel,
2005). This is to enable compatibility with previous analysis pipelines.

Borrow et al., (2020). swiftsimio: A Python library for reading SWIFT data. Journal of Open Source Software, 5(52), 2430. https://doi.org/
10.21105/joss.02430

1

https://doi.org/10.21105/joss.02430
https://github.com/openjournals/joss-reviews/issues/2430
https://github.com/swiftsim/swiftsimio
https://doi.org/10.5281/zenodo.3969353
https://dfm.io
https://github.com/dmentipl
https://github.com/mtremmel
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02430
https://doi.org/10.21105/joss.02430


The SWIFT snapshot files have main datasets called PartType{0,1,2,3,4,5}, each with
sub-datasets such as Coordinates, Velocities, etc. that contain the co-ordinates and
velocities for particles of that type respectively. When the file is opened in swiftsimio, this
is translated to an object hierarchy, so that for a user to access the co-ordinates of the gas
particles they would use code similar to:

from swiftsimio import load

data = load("/path/to/snapshot.hdf5")
coordinates = data.gas.coordinates

where here coordinates is an unyt array containing the co-ordinates of all of the gas particles
in the file with appropriate units and cosmology information attached. This data is loaded
lazily, with an array only loaded from file when it is requested for use by the user. This data
is then cached for future use.
The table below shows what each particle type corresponds to and how it is accessed in
swiftsimio.

Particle type swiftsimio name Description
0 gas Gas particles, the only type of particles

to have hydrodynamics calculations
performed on them.

1 dark_matter Dark matter particles, only subject to
the force of gravity.

2 boundary Boundary particles; the same as dark
matter but typically more massive.

3 second_boundary Boundary particles; the same as dark
matter but typically more massive.

4 stars Star particles representing either
individual stars or a stellar population.

5 black_holes Black hole particles representing
individual black holes.

Borrow et al., (2020). swiftsimio: A Python library for reading SWIFT data. Journal of Open Source Software, 5(52), 2430. https://doi.org/
10.21105/joss.02430

2

https://doi.org/10.21105/joss.02430
https://doi.org/10.21105/joss.02430


Solving the data reduction challenge

Figure 1: Pictorial representation of the top-level grid in SWIFT. The background shows the distri-
bution of matter in the snapshot, with selected galaxies circled. swiftsimio can load the data in
the regions that these spheres overlap with, only reading the appropriate particle data from file. Each
coloured region shows the top-level cells that would be loaded for the corresponding circled galaxy.

To solve the dynamic range problem, we can turn to the spatial arrangement of the particle
data. Simulations in SWIFT are performed in a cuboid volume that is split into a fixed number
of top-level cells. When a snapshot of the simulation is dumped, each array is written to disk
top-level cell by top-level cell, ensuring a well-characterised order. The order in which the
data is stored is then written as metadata in the Cells dataset in the snapshot file. The
SWIFTMask object within swiftsimio uses this metadata to provide a mask to be used with
the h5py library to read a sub-set of the particle data. This process ensures that as little data
is read from disk as possible.
The use of this masking functionality is unique to swiftsimio and allows for significantly
reduced memory footprint and cost relative to reading the full snapshot. Other libraries, such
as yt (Turk et al., 2011) offer similar functionality through the creation of a hashtable on the
first read of the snapshot, but our approach requires no extra computation or files to achieve.

Borrow et al., (2020). swiftsimio: A Python library for reading SWIFT data. Journal of Open Source Software, 5(52), 2430. https://doi.org/
10.21105/joss.02430

3

https://doi.org/10.21105/joss.02430
https://doi.org/10.21105/joss.02430


Why swiftsimio?

There are many Python libraries that are able to read the Gadget-style formatted HDF5 data
that SWIFT outputs, not limited to but including: yt (Turk et al., 2011), pynbody (Pontzen,
Roškar, Stinson, & Woods, 2013) and pnbody (Revaz, 2013). The other option is simply to
use the h5py library directly, and forgo any extra processing of the data.
swiftsimio was created because these libraries either are too slow (usually performing sig-
nificant pre-calculation when loading a snapshot), provide too weak of a connection to the
data in the snapshot (e.g. reading the data in a different order than it is stored in the file), or
would have been unable to integrate with the metadata that SWIFT outputs. To make full
use of the SWIFT metadata all of these packages would have had to have significant re-writes
of their internals, which would have taken significantly more time (due to their more complex
codebases) or would have been unwelcome changes due to their impact on the users of other
simulation codes.
We can also ensure that swiftsimio remains updated and constantly in-sync with the rapidly
changing SWIFT code, as well as ensure that extra routines that are part of the library
(e.g. visualisation) use the same definitions and functions that are implemented in the main
simulation code.
Finally, swiftsimio includes many other features useful to users of the SWIFT cosmological
simulation code, such as parallel visualisation and data repackaging.
The swiftsimio package will enable the next generation of cosmological simulations, ran
with SWIFT, to be analysed on substantially smaller machines than were previously required
with little extra effort from day-to-day users.
swiftsimio is hosted on GitHub and has documentation available through ReadTheDocs.

Acknowledgements

JB is supported by STFC studentship ST/R504725/1. AB is supported by STFC grants
ST/R001006/1 and ST/P002447/1 as part of the DiRAC RSE team. This work used the
DiRAC@Durham facility managed by the Institute for Computational Cosmology on behalf
of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded by BEIS
capital funding via STFC capital grants ST/K00042X/1, ST/P002293/1, ST/R002371/1
and ST/S002502/1, Durham University and STFC operations grant ST/R000832/1. DiRAC
is part of the National e-Infrastructure. We would like to extend our thanks specifically to
Alastair Basden and his team for managing the DiRAC Memory Intensive service.

References

Borrow, J., Bower, R. G., Draper, P. W., Gonnet, P., & Schaller, M. (2018). SWIFT:
Maintaining weak-scalability with a dynamic range of 104 in time-step size to harness
extreme adaptivity. Proceedings of the 13th SPHERIC International Workshop, Gal-
way, Ireland, June 26-28 2018, 44–51. Retrieved from https://ui.adsabs.harvard.edu/
abs/2018arXiv180701341B/abstract

Goldbaum, N., ZuHone, J., Turk, M., Kowalik, K., & Rosen, A. (2018). Unyt: Handle,
manipulate, and convert data with units in Python. Journal of Open Source Software,
3(28), 809. doi:10.21105/joss.00809

Pontzen, A., Roškar, R., Stinson, G., & Woods, R. (2013, May). pynbody: N-Body/SPH
analysis for python. http://ascl.net/1305.002.

Borrow et al., (2020). swiftsimio: A Python library for reading SWIFT data. Journal of Open Source Software, 5(52), 2430. https://doi.org/
10.21105/joss.02430

4

https://github.com/swiftsim/swiftsimio
https://swiftsimio.readthedocs.io
mailto:DiRAC@Durham
https://ui.adsabs.harvard.edu/abs/2018arXiv180701341B/abstract
https://ui.adsabs.harvard.edu/abs/2018arXiv180701341B/abstract
https://doi.org/10.21105/joss.00809
http://ascl.net/1305.002
https://doi.org/10.21105/joss.02430
https://doi.org/10.21105/joss.02430


Revaz, Y. (2013, February). pNbody: A python parallelized N-body reduction toolbox. http:
//ascl.net/1302.004.

Schaller, M., Gonnet, P., Chalk, A. B. G., & Draper, P. W. (2016). SWIFT: Using task-
based parallelism, fully asynchronous communication, and graph partition-based domain
decomposition for strong scaling on more than 100,000 cores. Proceedings of the Platform
for Advanced Scientific Computing Conference on - PASC ’16, 1–10. doi:10.1145/2929908.
2929916

Schaye, J., Crain, R. A., Bower, R. G., Furlong, M., Schaller, M., Theuns, T., Dalla Vecchia,
C., et al. (2015). The EAGLE project: Simulating the evolution and assembly of galaxies
and their environments. Monthly Notices of the Royal Astronomical Society, 446(1),
521–554. doi:10.1093/mnras/stu2058

Springel, V. (2005). The cosmological simulation code gadget-2. Monthly Notices of the
Royal Astronomical Society, 364(4), 1105–1134. doi:10.1111/j.1365-2966.2005.09655.x

The HDF Group. (1997). Hierarchical Data Format, version 5.
Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel, T., & Norman,

M. L. (2011). yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data. The
Astrophysical Journal Supplement Series, 192(1), 9. doi:10.1088/0067-0049/192/1/9

Borrow et al., (2020). swiftsimio: A Python library for reading SWIFT data. Journal of Open Source Software, 5(52), 2430. https://doi.org/
10.21105/joss.02430

5

http://ascl.net/1302.004
http://ascl.net/1302.004
https://doi.org/10.1145/2929908.2929916
https://doi.org/10.1145/2929908.2929916
https://doi.org/10.1093/mnras/stu2058
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1088/0067-0049/192/1/9
https://doi.org/10.21105/joss.02430
https://doi.org/10.21105/joss.02430

	Summary
	Background
	Structure of a SWIFT snapshot
	Solving the data reduction challenge
	Why swiftsimio?
	Acknowledgements
	References

