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Summary

The exploding field of single cell transcriptomics has begun to enable deep analysis of gene
expression and cell types, but spatial context is lost in the preparation of tissue for these assays.
Recent developments in biochemistry, microfluidics, and microscopy have come together to
bring about an “alphabet soup” of technologies that enable sampling gene expression in situ,
with varying levels of spatial resolution, sensitivity, and genetic depth. These technologies
promise to permit biologists to ask new questions about the spatial relationships between
cell type and interactions between gene expression and cell morphology. However, these
assays generate very large microscopy datasets which are challenging to process using general
microscopy analysis tools. Furthermore, many of these assays require specialized analysis to
decode gene expression from multiplexed experimental designs.

Statement of Need

starfish is a Python library for processing images generated by microscopy-based spatial tran-
scriptomics assays. It lets biologists build scalable pipelines that localize and quantify RNA
transcripts in image data generated by any hybridization- or sequencing-based in situ tran-
scriptomics method, from classic RNA single-molecule FISH to combinatorial barcoded assays.
Image processing of an experiment is divided into fields of view (FOV) that correspond to the
data produced by a microscope at a single location on a microscope slide. starfish lets users
register and pre-process images in each FOV, localize spots representing tagged RNA molecules
in 3D, decode the identity of those molecules according to the experimental design, segment
cells, assign the spots to cells, then aggregate spots into a cell x gene expression matrix. This
spatially-annotated gene expression matrix can then be analyzed and visualized in downstream
tools for single-cell biology, such as Seurat (Stuart et al., 2019), Bioconductor (Huber et al.,
2015), Scanpy (Wolf et al., 2018), and cellxgene (Megill et al., 2020).
To enable large scale processing of these data, starfish leverages a 5-dimensional imaging data
model (x, y, z, round, channel) backed by the cloud-friendly spacetx-format file format,
and slicedimage, an interface for lazy, distributed loading of spacetx-format datasets.
Furthermore, starfish implements comprehensive logging of all data processing steps for prove-
nance tracking, reproducibility, and transparency. starfish is built on top of popular Python
tools like xarray (Hoyer et al., 2016) and scikit-image (van der Walt et al., 2014).
There are a number of other tools which support localization and quantification of spots
in fluorescent microscopy images, including ImageJ and CellProfiler, however these tools do
not support multiplexed decoding of gene targets necessary for many assays. Other tools
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which are designed more specifically to handle the kinds of assays that starfish supports
include dotdotdot (Maynard et al., 2020), a MATLAB toolbox designed for RNAscope assays;
pysmFISH, a Python package designed for smFISH assays; and SMART-Q, a fork from an
earlier development release of starfish adding support for immunostaining and other features
(Yang et al., 2020).
starfish requires a working knowledge of Python and fluorescent image analysis for a user to
create an analysis pipeline. To help new users get started and support the broader single
cell biology community in learning how to work with these data, starfish maintains example
datasets and reference implementations ported from published assays, including MERFISH
(Moffitt et al., 2016), In Situ Sequencing (Ke et al., 2013), osmFISH (Codeluppi et al.,
2018), BaristaSeq (Chen et al., 2017), smFISH (Long et al., 2018), DARTFISH (Cai &
Zhang, 2019), STARmap (Wang et al., 2018), and seqFISH (Shah et al., 2018). To take
advantage of starfish’s support for large scale processing, users must have familiarity with
cluster or cloud computing.
starfish was developed alongside the SpaceTx project, a CZI-funded effort to compare spatial
transcriptomics methods in the context of determining cell types in the brain (Lein et al.,
2018). starfish is currently in use by multiple research groups, including the Allen Institute
for Brain Science, the Chan Zuckerberg Biohub, and the Zhang Lab at UC San Diego. These
groups support multiple large-scale projects profiling in situ gene expression, including the
SpaceTx consortium, the Human Cell Atlas, the BRAIN Initiative Cell Census Network, and
the HuBMAP Consortium.
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