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Summary

Discrete optimization problems are often of practical real-world importance as well as com-
putationally intractable. For example, the traveling salesperson, bin packing, and longest
common subsequence problems are NP-Hard, as is resource constrained scheduling, and many
single-machine scheduling problems (Garey & Johnson, 1979). Polynomial time algorithms
for such problems are unlikely to exist, and the best known algorithms that guarantee optimal
solutions have a worst-case exponential runtime. It is thus common to use stochastic local
search and other metaheuristics (Gonzalez, 2018). Stochastic local search algorithms begin at
a random search state, and apply a sequence of neighbor transitions to nearby search states.
This includes perturbative (Hoos & Stützle, 2018) algorithms like simulated annealing (Dela-
haye, Chaimatanan, & Mongeau, 2019) and hill climbers (Hoos & Stützle, 2018), where each
search state is a complete candidate feasible solution, and a mutation operator makes a small
random modification to move to another local candidate solution; and also includes construc-
tive (Hoos & Stützle, 2018) algorithms like stochastic samplers (Bresina, 1996; Cicirello &
Smith, 2005; Grasas, Juan, Faulin, de Armas, & Ramalhinho, 2017; Langley, 1992; Reyes-
Rubiano, Calvet, Juan, Faulin, & Bové, 2020), where each search state is a partial solution
that is iteratively transformed into a complete solution. Stochastic local search algorithms do
not guarantee optimal solutions. However, they often find near-optimal solutions in much less
time than systematic search. They also offer an anytime property (Jesus, Liefooghe, Derbel,
& Paquete, 2020; Zilberstein, 1996), where solution quality improves with runtime.
Chips-n-Salsa is a Java library of customizable, hybridizable, iterative, parallel, stochastic,
and self-adaptive local search algorithms. Its focus is discrete optimization, but also supports
continuous optimization. The library provides a variety of solution representations, includ-
ing BitVector and IntegerVector classes, indexable vectors of bits and integers, respectively,
along with corresponding mutation operators. The library utilizes our significant prior research
on permutation optimization problems, providing an extensive set of mutation operators for
permutations (Cicirello, 2016; Cicirello & Cernera, 2013), including window-limited muta-
tion (Cicirello, 2014). It uses the JavaPermutationTools (JPT) (Cicirello, 2018a) library for
efficiently representing solutions to such problems. For continuous problems, Chips-n-Salsa
provides a RealVector class, Gaussian mutation (Petrowski & Ben-Hamida, 2017), Cauchy
mutation (Petrowski & Ben-Hamida, 2017), and uniform mutation. The library includes
optimization problems useful for benchmarking metaheuristic implementations, such as the
well-known OneMax problem (Doerr & Neumann, 2019), BoundMax (generalization of One-
Max to integers), the Permutation in a Haystack problem (Cicirello, 2016), and polynomial
root finding.
The repository (https://github.com/cicirello/Chips-n-Salsa) contains the library source code,
and programs with examples of key functionality. API and other documentation is hosted
on the web (https://chips-n-salsa.cicirello.org/). The library can be integrated into projects
using maven via GitHub Packages.
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Chips-n-Salsa Features and Functionality:

• Stochastic Local Search Algorithms: The library supports simulated annealing (De-
lahaye et al., 2019), with all of the common annealing schedules, as well as advanced
annealing schedules. It includes common forms of hill climbing (Hoos & Stützle, 2018),
and several stochastic sampling (Grasas et al., 2017) algorithms, such as iterative sam-
pling (Langley, 1992), Heuristic Biased Stochastic Sampling (HBSS) (Bresina, 1996),
Value Biased Stochastic Sampling (VBSS) (Cicirello, 2003; Cicirello & Smith, 2005),
and stochastic sampling with acceptance bands (Gomes, Selman, & Kautz, 1998; Oddi
& Smith, 1997). We optimized random number generation based on our prior research
to minimize the runtime impact of one of the more costly operations of a metaheuristic
(Cicirello, 2018b).

• Customizable: Chips-n-Salsa uses generic types enabling using the library to optimize
other representations beyond what is provided in the library. It also enables easily
integrating new mutation operators, and customizing all stages of the local search (e.g.,
choice of annealing schedule for simulated annealing).

• Hybridizable: Chips-n-Salsa supports integrating multiple forms of local search (e.g.,
hybrids of hill climbing with simulated annealing), creating hybrid mutation operators
(e.g., combining multiple mutation operators), and running more than one type of search
for the same problem concurrently using multiple threads as a form of algorithm portfolio
(Gomes & Selman, 2001; Tong, Liu, & Yao, 2019).

• Iterative: Chips-n-Salsa supports multistart metaheuristics, including several restart
schedules (Cicirello, 2017; Luby, Sinclair, & Zuckerman, 1993) for varying the run
lengths across the restarts.

• Parallel: Chips-n-Salsa enables parallel execution of multiple instances of the same, or
different, stochastic local search algorithms for a problem instance to accelerate search
by exploiting multicore architectures (Cicirello, 2017).

• Self-Adaptive: Chips-n-Salsa includes adaptive annealing schedules (Hubin, 2019; Šte-
fankovič, Vempala, & Vigoda, 2009) for simulated annealing, such as Modified Lam
(Boyan, 1998; Cicirello, 2007), self-tuning variations of the simpler annealing schedules,
and adaptive restart schedules (Cicirello, 2017).

Statement of Need

The target audience of Chips-n-Salsa includes those conducting computational research in
diverse domains, wherever applications of NP-Hard optimization problems is important. Ex-
isting local search open source implementations are often intimately tied to a specific problem,
and usually a specific form of local search. For example, a GitHub search finds countless
solvers for problems like Boolean Satisfiability or the Traveling Salesperson. Such problem-
dependent implementations are not easily adapted to new problems. There are notable ex-
ceptions. In particular, ECJ (Scott & Luke, 2019) and Jenetics (Jenetics, 2020) are both
mature and well-maintained Java libraries for genetic algorithms and related forms of evolu-
tionary computation. They are problem-independent, support multiple representations, and
include multithreaded capabilities. Their focus, however, is on population-based evolutionary
search; whereas Chips-n-Salsa is focused on single-solution algorithms. Another especially
noteworthy project is emili (Pagnozzi & Stützle, 2019), which is a C++ framework sup-
porting hybrid, single-solution, stochastic local search algorithms. Chips-n-Salsa is problem-
independent, representation-independent, and supports hybrid local search, as well as parallel
execution to easily exploit multicore architectures to speed up problem solving. Furthermore,
the self-adaptive and self-tuning features streamline development, eliminating the need for the
developer to tune control parameters.
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