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Summary

Grama is a Python package implementing a functional grammar of model analysis emphasiz-
ing the quantification of uncertainties. In Grama a model contains both a function mapping
inputs to outputs as well as a distribution characterizing uncertainties on those inputs. This
conceptual object unifies the engineer/scientist’s definition of a model with that of a statisti-
cian. Grama provides an implementation of this model concept, as well as verbs to carry out
model-building and model-analysis.

Statement of Need

Uncertainty Quantification (UQ) is the science of analyzing uncertainty in scientific prob-
lems and using those results to inform decisions. UQ has important applications to building
safety-critical engineering systems, and to making high-consequence choices based on scien-
tific models. However, UQ is generally not taught at the undergraduate level: Many engineers
leave their undergraduate training with a purely deterministic view of their discipline, which
can lead to probabilistic design errors that negatively impact safety (del Rosario, Fenrich, &
Iaccarino, 2020). To that end, I have developed a grammar of model analysis—Grama—to
facilitate rapid model analysis, communication of results, and the teaching of concepts, all
with quantified uncertainties. Intended users of Grama are scientists and engineers at the
undergraduate level and upward, seeking to analyze computationally-lightweight models.

Differentiating Attributes

Packages similar to Grama exist, most notably Sandia National Lab’s Dakota (Adams, 2017)
and UQLab (Marelli & Sudret, 2014) out of ETH Zurich. While both of these packages are
mature and highly featured, Grama has several differentiating attributes. First, Grama empha-
sizes an explicit but flexible model object: this object enables sharp decomposition of a UQ
problem into a model-building stage and a model-analysis stage. This logical decomposition
enables simplified syntax and a significant reduction in boilerplate code. Second, Grama im-
plements a functional programming syntax to emphasize operations against the model object,
improving readability of code. Finally, Grama is designed from the ground-up as a pedagogical
and communication tool. For learnability: Its verb-prefix syntax is meant to remind the user
how functions are used based solely on their name, and the package is shipped with fill-in-the-
blank Jupyter notebooks (Kluyver et al., 2016) to take advantage of the pedagogical benefits
of active learning (Freeman et al., 2014). For communication: The model object and func-
tional syntax abstract away numerical details for presentation in a notebook, while preserving
tracability and reproducibility of results through the inspection of source code.
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Inspiration and Dependencies

Grama relies heavily on the SciKit package ecosystem for its numerical backbone (Hunter,
2007; McKinney, 2010; Pedregosa et al., 2011; van der Walt, Colbert, & Varoquaux, 2011;
Virtanen et al., 2020). The functional design is heavily inspired by the Tidyverse (Wickham
et al., 2019), while its implementation is built upon dfply (Katovich, 2019). Additional
functionality for materials data via an optional dependency on Matminer (Ward et al., 2018).
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