
Grama: A Grammar of Model Analysis
Zachary del Rosario1

1 Visiting Professor, Olin College of Engineering
DOI: 10.21105/joss.02462

Software
• Review
• Repository
• Archive

Editor: Matthew Sottile
Reviewers:

• @BastinRobin
• @rodrigokataishi

Submitted: 05 July 2020
Published: 28 July 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Grama is a Python package implementing a functional grammar of model analysis emphasiz-
ing the quantification of uncertainties. In Grama a model contains both a function mapping
inputs to outputs as well as a distribution characterizing uncertainties on those inputs. This
conceptual object unifies the engineer/scientist’s definition of a model with that of a statisti-
cian. Grama provides an implementation of this model concept, as well as verbs to carry out
model-building and model-analysis.

Statement of Need

Uncertainty Quantification (UQ) is the science of analyzing uncertainty in scientific prob-
lems and using those results to inform decisions. UQ has important applications to building
safety-critical engineering systems, and to making high-consequence choices based on scien-
tific models. However, UQ is generally not taught at the undergraduate level: Many engineers
leave their undergraduate training with a purely deterministic view of their discipline, which
can lead to probabilistic design errors that negatively impact safety (del Rosario, Fenrich, &
Iaccarino, 2020). To that end, I have developed a grammar of model analysis—Grama—to
facilitate rapid model analysis, communication of results, and the teaching of concepts, all
with quantified uncertainties. Intended users of Grama are scientists and engineers at the
undergraduate level and upward, seeking to analyze computationally-lightweight models.

Differentiating Attributes

Packages similar to Grama exist, most notably Sandia National Lab’s Dakota (Adams, 2017)
and UQLab (Marelli & Sudret, 2014) out of ETH Zurich. While both of these packages are
mature and highly featured, Grama has several differentiating attributes. First, Grama empha-
sizes an explicit but flexible model object: this object enables sharp decomposition of a UQ
problem into a model-building stage and a model-analysis stage. This logical decomposition
enables simplified syntax and a significant reduction in boilerplate code. Second, Grama im-
plements a functional programming syntax to emphasize operations against the model object,
improving readability of code. Finally, Grama is designed from the ground-up as a pedagogical
and communication tool. For learnability: Its verb-prefix syntax is meant to remind the user
how functions are used based solely on their name, and the package is shipped with fill-in-the-
blank Jupyter notebooks (Kluyver et al., 2016) to take advantage of the pedagogical benefits
of active learning (Freeman et al., 2014). For communication: The model object and func-
tional syntax abstract away numerical details for presentation in a notebook, while preserving
tracability and reproducibility of results through the inspection of source code.

del Rosario, Z., (2020). Grama: A Grammar of Model Analysis. Journal of Open Source Software, 5(51), 2462. https://doi.org/10.21105/
joss.02462

1

https://doi.org/10.21105/joss.02462
https://github.com/openjournals/joss-reviews/issues/2462
https://github.com/zdelrosario/py_grama
https://doi.org/10.6084/m9.figshare.12725066.v1
http://noddle.io
https://github.com/BastinRobin
https://github.com/rodrigokataishi
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02462
https://doi.org/10.21105/joss.02462


Inspiration and Dependencies

Grama relies heavily on the SciKit package ecosystem for its numerical backbone (Hunter,
2007; McKinney, 2010; Pedregosa et al., 2011; van der Walt, Colbert, & Varoquaux, 2011;
Virtanen et al., 2020). The functional design is heavily inspired by the Tidyverse (Wickham
et al., 2019), while its implementation is built upon dfply (Katovich, 2019). Additional
functionality for materials data via an optional dependency on Matminer (Ward et al., 2018).

Acknowledgements

I acknowledge contributions from Richard W. Fenrich on the laminate plate model.

References

Adams, B. M. (2017). Sandia capabilities for uncertainty quantification. Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States).

del Rosario, Z., Fenrich, R. W., & Iaccarino, G. (2020). When are design allowables conser-
vative? In AIAA SciTech 2020 Forum (p. 0414). doi:10.2514/6.2020-0414

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., &
Wenderoth, M. P. (2014). Active learning increases student performance in science, en-
gineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23),
8410–8415. doi:10.1073/pnas.1319030111

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science Engi-
neering, 9(3), 90–95. doi:10.1109/MCSE.2007.55

Katovich, K. (2019). Dfply. GitHub repository. https://github.com/kieferk/dfply; GitHub.
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley,

K., et al. (2016). Jupyter notebooks-a publishing format for reproducible computational
workflows. In ELPUB (pp. 87–90). doi:10.3233/978-1-61499-649-1-87

Marelli, S., & Sudret, B. (2014). UQLab: A framework for uncertainty quantification in mat-
lab. In Vulnerability, uncertainty, and risk: Quantification, mitigation, and management
(pp. 2554–2563). doi:10.1061/9780784413609.257

McKinney. (2010). Data Structures for Statistical Computing in Python. In Stéfan van der
Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp.
56–61). doi:10.25080/Majora-92bf1922-00a

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
et al. (2011). Scikit-learn: Machine learning in python. The Journal of Machine Learning
Research, 12, 2825–2830.

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The numpy array: A structure
for efficient numerical computation. Computing in Science Engineering, 13(2), 22–30.
doi:10.1109/MCSE.2011.37

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., et al. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17, 261–272. doi:10.1038/s41592-019-0686-2

Ward, L., Dunn, A., Faghaninia, A., Zimmermann, N. E., Bajaj, S., Wang, Q., Montoya, J., et
al. (2018). Matminer: An open source toolkit for materials data mining. Computational
Materials Science, 152, 60–69. doi:10.1016/j.commatsci.2018.05.018

del Rosario, Z., (2020). Grama: A Grammar of Model Analysis. Journal of Open Source Software, 5(51), 2462. https://doi.org/10.21105/
joss.02462

2

https://doi.org/10.2514/6.2020-0414
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1109/MCSE.2007.55
https://github.com/kieferk/dfply
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1061/9780784413609.257
https://doi.org/%2010.25080/Majora-92bf1922-00a%20
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.commatsci.2018.05.018
https://doi.org/10.21105/joss.02462
https://doi.org/10.21105/joss.02462


Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund,
G., et al. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43),
1686. doi:10.21105/joss.01686

del Rosario, Z., (2020). Grama: A Grammar of Model Analysis. Journal of Open Source Software, 5(51), 2462. https://doi.org/10.21105/
joss.02462

3

https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.02462
https://doi.org/10.21105/joss.02462

	Summary
	Statement of Need
	Differentiating Attributes
	Inspiration and Dependencies

	Acknowledgements
	References

