
gym-electric-motor (GEM): A Python toolbox for the
simulation of electric drive systems
Praneeth Balakrishna1, Gerrit Book1, Wilhelm Kirchgässner1,
Maximilian Schenke1, Arne Traue1, and Oliver Wallscheid1

1 Department of Power Electronics and Electrical Drives, Paderborn University, Germany
DOI: 10.21105/joss.02498

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @moorepants
• @dineshresearch

Submitted: 29 May 2020
Published: 07 February 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The gym-electric-motor (GEM) library provides simulation environments for electrical drive
systems and, therefore, allows to easily design and analyze drive control solutions in Python.
Since GEM is strongly inspired by OpenAI’s gym (Brockman et al., 2016), it is particularly
well-equipped for (but not limited to) applications in the field of reinforcement-learning-based
control algorithms. In addition, the interface allows to plug in any expert-driven control ap-
proach, such as model predictive control, to be tested and to perform benchmark comparisons.
The GEM package includes a wide variety of motors, power electronic converters and mechan-
ical load models that can be flexibly selected and parameterized via the API. A modular
structure allows additional system components to be included in the simulation framework.

Statement of Need

Electric drive systems and their control are an important topic in both academic and industrial
research due to their worldwide usage and deployment. Control algorithms for these systems
have usually been designed, parameterized and tested within MATLAB - Simulink (The
MathWorks, Inc., 2020), which is developed and promoted specifically for such engineering
tasks. In the more recent past, however, commercial software like MATLAB has difficulties to
stay on par with state-of-the-art concepts for scientific modeling and the flexibility offered by
open-source libraries that are available for more accessible programming languages like Python.
Consequently, a Python-based drive simulation framework like GEM is an evident step in order
to accelerate corresponding control research and development. Specifically, the latest efforts
concerning industrial application of reinforcement-learning control algorithms heavily depend
on Python packages like Keras (Chollet & others, 2015), Tensorflow (Abadi et al., 2015) or
PyTorch(Paszke et al., 2019). Hence, the built-in OpenAI gym interface allows to easily couple
GEM to other open-source reinforcement learning toolboxes such as Stable Baselines3
(Raffin et al., 2019), TF-Agents (Guadarrama et al., 2018) or keras-rl (Plappert, 2016).
Providing easy access to the non-commercial, open-source GEM library allows users from any
engineering domain to include accurate drive models into their simulations, also beyond the
topic of control applications. Considering the prevalence of commercial software like MATLAB
for educational purposes, a free-of-charge simulation alternative that does not force students
or institutions to pay for licenses, has great potential to support and encourage training of
new talents in the field of electrical drives and neighbouring domains (e.g. power electronics
or energy systems). GEM has already been used in graduate courses on reinforcement learning
(Kirchgässner et al., 2020).

Balakrishna et al., (2021). gym-electric-motor (GEM): A Python toolbox for the simulation of electric drive systems. Journal of Open Source
Software, 6(58), 2498. https://doi.org/10.21105/joss.02498

1

https://doi.org/10.21105/joss.02498
https://github.com/openjournals/joss-reviews/issues/2498
https://github.com/upb-lea/gym-electric-motor
https://doi.org/10.5281/zenodo.4355691
https://kevinmoerman.org
https://github.com/moorepants
https://github.com/dineshresearch
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02498


Related software

Due to the strong dependence of downstream industrial development on simulated environ-
ments there is a comprehensive variety of commercial software that enables numerical analysis
of every facet of electric drives. To name just a few, MATLAB - Simulink is probably the
most popular software environment for numerical analysis in engineering. Herein, MATLAB is
providing for a scientific calculation framework and Simulink for a model-driven graphical
interface with a very large field of applications. Examples that are designed for real-time
capability (e.g., for hardware-in-the-loop prototyping) can be found in VEOS (dSPACE GmbH,
2019) or HYPERSIM (OPAL-RT TECHNOLOGIES, Inc., 2020). Non-commercial simulation li-
braries exist, but they rarely come with predefined system models. An exemplary package from
this category is SimuPy (Margolis, 2017), which provides lots of flexibility for the synthesis of
generic simulation models, but also requires the user to possess the necessary expert knowledge
in order to implement a desired system model. Likewise, general purpose component-oriented
simulation frameworks like OpenModelica (Open Source Modelica Consortium, 2020) or XCos
(Scilab, 2020) can be used for setting up electrical drive models, too, but this requires expert
domain knowledge and out-of-the-box Python interfaces (e.g., for reinforcement learning) are
not available.
In the domain of motor construction it is furthermore interesting to observe the behavior of
magnetic and electric fields within a motor (simulation of partial differential equations). Cor-
responding commercial simulation environments, like ANSYS Maxwell (ANSYS, Inc., 2020),
Motor-CAD (Motor Design Ltd., 2020) or MotorWizard (ElectroMagneticWorks, Inc., 2020)
and the exemplary non-commercial alternative FEMM (Meeker, 2020) are very resource and
time consuming because they depend on the finite element method, which is a spatial dis-
cretization and numerical integration procedure. Hence, these software packages are usually
not considered in control development, and complement GEM at most. This particularly ap-
plies in the early control design phase when researching new, innovative control approaches
(rapid control prototyping) or when students want to receive quasi-instantaneous simulation
feedbacks.

Package Architecture

The GEM library models an electric drive system by its four main components: voltage supply,
power converter, electric motor and mechanical load. The general structure of such a system
is depicted in Figure 1.

 

Electric

Motor

Mechanical 

Load
Converterusup uin

iin

me, T

TL(�me)

 

 

at

isup

Voltage

Supply

Action

Figure 1: Simplified structure diagram of an electric drive system

The voltage supply provides the necessary power that is used by the motor. It is modeled
by a fixed supply voltage usup, which allows to monitor the supply current into the converter.
A power electronic converter is needed to supply the motor with electric power of proper
frequency and magnitude, which commonly includes the conversion of the supply’s direct
current to alternating current. Typical drive converters exhibit switching behavior: there is a

Balakrishna et al., (2021). gym-electric-motor (GEM): A Python toolbox for the simulation of electric drive systems. Journal of Open Source
Software, 6(58), 2498. https://doi.org/10.21105/joss.02498

2

https://doi.org/10.21105/joss.02498


finite set of different voltages that can be applied to the motor, depending on which switches
are open and which are closed. Besides this physically accurate view, a popular modeling
approach for switched mode converters is based on dynamic averaging of the applied voltage
uin, rendering the voltage a continuous variable. Both of these modeling approaches are
implemented and can be chosen freely, allowing usage of control algorithms that operate
on a finite set of switching states or on continuous input voltages. The electric motor is
the centerpiece of every drive system. It is described by a system of ordinary differential
equations (ODEs), which represents the motor’s electrical behavior. In particular, the domain
of three-phase drives makes use of coordinate transformations to view these ODEs in the more
interpretable frame of field-oriented coordinates. In GEM, both, the physically accurate three-
phase system (abc-coordinates) and the simplified, two-dimensional, field-oriented system (dq-
coordinates) are available to be used as the frame of input and output variables, allowing for
easy and quick controller analysis and diagnose within the most convenient coordinate system.
Finally, the torque T resulting from the motor is applied to the mechanical load. The load is
characterized by a moment of inertia and by a load torque TL that is directed against the motor
torque. Load torque behavior can be parameterized with respect to the angular velocity ωme in
the form of constant, linear and quadratic dependency (and arbitrary combinations thereof).
Speed changes that result from the difference between motor and load torque are modeled
with another ODE which completely covers the mechanical system behavior. Alternatively, the
motor speed can be set to a fixed value, which can be useful for the investigation of control
algorithms concerning generator operation, or it can be set to follow a specified trajectory,
which is convenient when inspecting scenarios with defined speed demands like in traction
applications.

Features

A large number of different motor systems is already implemented. These include DC drives
as well as synchronous and induction three-phase drives. A complete list can be viewed in the
GEM documentation (Balakrishna et al., 2020). The corresponding power converters allow to
control the motor either directly via applied voltage (continuous-control-set) or by defining the
converter’s switching state (finite-control-set). Specifically for the use within reinforcement-
learning applications and for testing state-of-the-art expert-driven control designs, the toolbox
comes with a built-in reference generator, which can be used to create arbitrary reference
trajectories (e.g., for the motor current, velocity or torque). These generated references are
furthermore used to calculate a reward. In the domain of reinforcement learning, reward is
the optimization variable that is to be maximized. For the control system scenario, reward is
usually defined by the negative distance between the momentary and desired operation point,
such that expedient controller behavior can be monitored easily. The reward mechanism also
allows to take physical limitations of the drive system into account, e.g., in the way of a notably
low reward if limit values are surpassed. Optionally, the environment can be setup such that
a reset of the system is induced in case of a limit violation. In addition, built-in visualization
and plotting routines allow to monitor the training process of reinforcement learning agents
or the performance of expert-driven control approaches.

Examples

A minimal example of GEM's simulation capability is presented in Figure 2. The plot shows
the start-up behavior of a squirrel cage induction motor connected to an idealized three-phase
electric grid depicting the angular velocity ωme, the torque T , the voltage ua,b,c and the
current id,q. Here, the voltage is depicted within the physical abc-frame while the current is
viewed within the simplified dq-frame.

Balakrishna et al., (2021). gym-electric-motor (GEM): A Python toolbox for the simulation of electric drive systems. Journal of Open Source
Software, 6(58), 2498. https://doi.org/10.21105/joss.02498

3

https://doi.org/10.21105/joss.02498


0
50
100
150

ω
m
e
/1 s

−200

0

200

u
/V

ua ub uc

0 10 20 30 40 50 60
t /ms

0

20
T
/N
m

0 10 20 30 40 50 60
t /ms

0
10
20
30

i/
A

id iq

Figure 2: Simulation of a squirrel cage induction motor connected to a rigid network at 50Hz

Exemplary code snippets that demonstrate the usage of GEM within both, the classical control
and the reinforcement learning context are included within the project’s examples folder.
Featured examples:

• GEM_cookbook.ipynb: a basic tutorial-style notebook that presents the basic interface
and usage of GEM

• scim_ideal_grid_simulation.py: a simple motor simulation showcase of the squirrel
cage induction motor that was used to create Figure 2

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/

ANSYS, Inc. (2020). ANSYS Maxwell 2020 R1. https://www.ansys.com/products/
electronics/ansys-maxwell

Balakrishna, P., Book, G., Kirchgässner, W., Schenke, M., Traue, A., & Wallscheid, O. (2020).
Gym-electric-motor documentation. https://upb-lea.github.io/gym-electric-motor/

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). OpenAI Gym. https://github.com/openai/gym

Chollet, F., & others. (2015). Keras. https://keras.io
dSPACE GmbH. (2019). VEOS 4.5. https://www.dspace.com/en/inc/home/products/sw/

simulation_software/veos.cfm
ElectroMagneticWorks, Inc. (2020). MotorWizard. https://www.emworks.com/product/

MotorWizard
Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P., Holly, E., Fishman, S., Wang,

K., Gonina, E., Wu, N., Kokiopoulou, E., Sbaiz, L., Smith, J., Bartók, G., Berent, J.,
Harris, C., Vanhoucke, V., & Brevdo, E. (2018). TF-Agents: A library for reinforcement
learning in TensorFlow. In GitHub repository. https://github.com/tensorflow/agents.
https://github.com/tensorflow/agents

Kirchgässner, W., Schenke, M., Wallscheid, O., & Weber, D. (2020). Paderborn university:
Reinforcement learning course materials. https://github.com/upb-lea/reinforcement_
learning_course_materials

Balakrishna et al., (2021). gym-electric-motor (GEM): A Python toolbox for the simulation of electric drive systems. Journal of Open Source
Software, 6(58), 2498. https://doi.org/10.21105/joss.02498

4

https://github.com/upb-lea/gym-electric-motor/tree/master/examples
https://colab.research.google.com/github/upb-lea/gym-electric-motor/blob/master/examples/environment_features/GEM_cookbook.ipynb
https://github.com/upb-lea/gym-electric-motor/blob/master/examples/environment_features/scim_ideal_grid_simulation.py
https://www.tensorflow.org/
https://www.ansys.com/products/electronics/ansys-maxwell
https://www.ansys.com/products/electronics/ansys-maxwell
https://upb-lea.github.io/gym-electric-motor/
https://github.com/openai/gym
https://keras.io
https://www.dspace.com/en/inc/home/products/sw/simulation_software/veos.cfm
https://www.dspace.com/en/inc/home/products/sw/simulation_software/veos.cfm
https://www.emworks.com/product/MotorWizard
https://www.emworks.com/product/MotorWizard
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/upb-lea/reinforcement_learning_course_materials
https://github.com/upb-lea/reinforcement_learning_course_materials
https://doi.org/10.21105/joss.02498


Margolis, B. W. L. (2017). SimuPy 1.0.0. In GitHub repository. https://github.com/simupy/
simupy

Meeker, D. (2020). FEMM 4.2. http://www.femm.info/wiki/HomePage
Motor Design Ltd. (2020). Motor-CAD v12. https://www.motor-design.com/

motor-cad-software/
OPAL-RT TECHNOLOGIES, Inc. (2020). HYPERSIM 2020.1. https://www.opal-rt.com/

systems-hypersim/
Open Source Modelica Consortium. (2020). OpenModelica. https://openmodelica.org/.

https://openmodelica.org/
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. dAlché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Plappert, M. (2016). Keras-rl. In GitHub repository. https://github.com/keras-rl/keras-rl;
GitHub. https://github.com/keras-rl/keras-rl

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., & Dormann, N. (2019). Sta-
ble Baselines3. In GitHub repository. https://github.com/DLR-RM/stable-baselines3;
GitHub.

Scilab. (2020). Xcos (scilab 6.1.0). https://www.scilab.org/software/xcos. https://www.
scilab.org/software/xcos

The MathWorks, Inc. (2020). MATLAB - simulink R2020a. https://www.mathworks.com/
products/matlab.html

Balakrishna et al., (2021). gym-electric-motor (GEM): A Python toolbox for the simulation of electric drive systems. Journal of Open Source
Software, 6(58), 2498. https://doi.org/10.21105/joss.02498

5

https://github.com/simupy/simupy
https://github.com/simupy/simupy
http://www.femm.info/wiki/HomePage
https://www.motor-design.com/motor-cad-software/
https://www.motor-design.com/motor-cad-software/
https://www.opal-rt.com/systems-hypersim/
https://www.opal-rt.com/systems-hypersim/
https://openmodelica.org/
https://openmodelica.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/DLR-RM/stable-baselines3
https://www.scilab.org/software/xcos
https://www.scilab.org/software/xcos
https://www.scilab.org/software/xcos
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://doi.org/10.21105/joss.02498

	Summary
	Statement of Need
	Related software
	Package Architecture
	Features
	Examples
	References

