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Summary

Ordinary and partial differential equations (ODEs and PDEs) are used to model many impor-
tant phenomena. In most cases, solutions of these models must be approximated by numer-
ical methods. Most of the relevant algorithms fall within a few classes of methods, with the
properties of individual methods determined by their coefficients. The choice of appropriate
coefficients in the design of methods for specific applications is an important area of research.
RK-Opt is a software package for designing numerical ODE solvers with coefficients optimally
chosen to provide desired properties. It is available from https://github.com/ketch/RK-Opt,
with documentation at http://numerics.kaust.edu.sa/RK-Opt/. The primary focus of the
package is on the design of Runge-Kutta methods, but some routines for designing other
classes of methods such as multistep Runge-Kutta and general linear methods are also in-
cluded.

Statement of need

Over the last several decades, a great deal of work has gone into the design of numerical
ODE solvers. Initially this work was aimed at developing general purpose solvers, but over
time the emphasis shifted increasingly toward development of optimized methods for specific
applications. Different accuracy, stability, performance, and other properties may be relevant
or essential depending on the nature of the equations to be solved.
An s-stage Runge-Kutta method has roughly s^2 coefficients (roughly s^2/2 for explicit meth-
ods), which can be chosen so as to provide high accuracy, stability, or other properties. His-
torically, most interest in Runge-Kutta methods has focused on methods using the minimum
number of stages for a given order of accuracy. However, in the past few decades there has
been increasing recognition that using extra stages can be worthwhile in order to improve
other method properties. Some areas where this is particularly useful are in the enhancement
of linear and nonlinear stability properties, the reduction of storage requirements, and the
design of embedded pairs. Methods with dozens or even hundreds of stages are not unheard
of.
At the same time, most existing Runge-Kutta methods have been designed by hand, by
researchers laboriously solving the order conditions. When using extra stages, the number of
available parameters makes the selection of a near-optimal choice by hand impossible, and
one resorts to computational optimization. This leads to a different paradigm of numerical
method design, in which we use sophisticated numerical (optimization) algorithms to design
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sophisticated numerical (integration) algorithms. It can be expected that this trend will
accelerate in the future, and perhaps one day simple manually-constructed algorithms will be
the exception.
RK-Opt contains a set of tools for designing Runge-Kutta methods in this paradigm. It pro-
vides code that can enforce desired properties and/or objective functions. The constraints and
objective are then used within an optimization framework, to determine coefficients of meth-
ods that best achieve the desired goal. Thus, RK-Opt is a sort of meta-software, consisting
of algorithms whose purpose is to create other algorithms.
Typically, the most obvious formulation of the corresponding optimization problem is in-
tractable. Therefore, these problems are reformulated in ways that make them amenable to
available techniques. These reformulations include, for instance, turning a nonconvex problem
into a sequence of convex problems or even linear programs. The resulting algorithms can
often guarantee optimality of their output. However, for the general problem of determining
Runge-Kutta coefficients, the nonconvex problem must be attacked directly and optimality
cannot be guaranteed.
RK-Opt is written entirely in MATLAB, and leverages the MATLAB Optimization Toolbox
as well as the Global Optimization Toolbox. Its development has been motivated largely by
research needs and it has been used in a number of papers (see below).

Features

RK-Opt includes the following subpackages.

polyopt

This package computes optimal stability functions for Runge-Kutta methods. Here optimal
means that the stable step size is maximized for a given ODE spectrum. The corresponding
optimization problem is intractable under a direct implementation. The package uses the
algorithm developed in (Ketcheson & Ahmadia, 2012), which relaxes the global optimization
problem by solving a sequence of convex subproblems. Under certain technical assumptions,
the result is guaranteed to be the optimal solution of the original problem. polyopt relies on
CVX (Grant & Boyd, 2008, 2014) to solve the convex subproblems. This package is usually
used as the first step in designing a Runge-Kutta method.

RK-Coeff-Opt

This package computes optimal Runge-Kutta coefficients based on a desired set of constraints
and an objective. Available constraints include:

• The number of stages and order of accuracy
• The class of method (explicit, implicit, diagonally implicit, low-storage)
• The coefficients of the stability polynomial (usually determined using polyopt)

Two objective functions are provided; methods can be optimized for the strong stability pre-
serving (SSP) coefficient or the principal error norm (a measure of the leading-order truncation
error coefficients). In addition to standard Runge-Kutta methods, various classes of multistep
Runge-Kutta methods can also be optimized.
The optimization problem in question is highly nonconvex and the available solvers may fail to
find a solution, or may converge to a non-optimal solution. For this reason, the implementation
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is based on solving many local optimization problems in parallel from different random initial
points, using MATLAB’s Global Optimization Toolbox.
The packages dwrk-opt and low-storage are specialized but less full-featured versions of
RK-Coeff-Opt that were developed for specific research projects involving downwind Runge-
Kutta methods and low-storage Runge-Kutta methods, respectively.

am_radius-opt

Whereas the previous two subpackages are fairly general-purpose tools, this package solves
a very specific and discrete set of problems described in (Ketcheson, 2009). Specifically, the
provided routines determine the coefficients of multistep methods (including classes of general
linear methods) with the largest possible SSP coefficient (also known as radius of absolute
monotonicity). The corresponding optimization problem had previously been attacked using
brute force search, but this limited its solvability to methods with very few steps. In this
package the problem is reformulated as a sequence of linear programming problems, enabling
its efficient solution for methods with many steps.

Related research and software

RK-Opt development has proceeded in close connection to the NodePy package (https://
github.com/ketch/NodePy). Whereas RK-Opt is focused on the design of numerical methods,
NodePy is focused more on their analysis. A common workflow involves generating new
methods with RK-Opt and then studying their properties in more detail using NodePy.
Some of the research projects that have made use of RK-Opt include development of:

• SSP Runge-Kutta methods (Gottlieb, Grant, & Higgs, 2015; Higueras & Roldán, 2019a;
Ketcheson, 2008; Ketcheson et al., 2009)

• SSP linear multistep methods (Ketcheson, 2009)
• SSP general linear methods (Bresten et al., 2017; Ketcheson et al., 2011)
• SSP IMEX Runge-Kutta methods (Conde, Gottlieb, Grant, & Shadid, 2017)
• Low-storage Runge-Kutta methods (Higueras & Roldán, 2019b; Ketcheson, 2010)
• Optimal Runge-Kutta stability polynomials (Ketcheson & Ahmadia, 2012)
• Additive and downwind SSP Runge-Kutta methods (Higueras, Ketcheson, & Kocsis,

2018; Ketcheson, 2011)
• Optimal Runge-Kutta methods for specific PDE semi-discretizations (Kubatko, Yeager,

& Ketcheson, 2014; Parsani & Ketcheson, 2012; Parsani et al., 2012; Parsani, Ketche-
son, & Deconinck, 2013)

• Optimal Runge-Kutta methods for pseudo-time stepping (Vermeire, Loppi, & Vincent,
2019, 2020)

• Embedded pairs for Runge-Kutta methods (Conde, Fekete, & Shadid, 2018)
• Runge-Kutta methods with high weak stage order (Ketcheson, Seibold, Shirokoff, &

Zhou, 2018)
• SSP multistage, multiderivative methods (Christlieb, Gottlieb, Grant, & Seal, 2016;

Grant, Gottlieb, & Seal, 2019; Reynoso, Gottlieb, & Grant, 2017)

As can be seen from this list, applications have mostly stemmed from the work of the main
developer’s research group, but have since expanded beyond that.
Because of the nature of RK-Opt, applications often involve writing some additional code
to impose special constraints, or simply using the existing code as a template. A number
of related optimization routines written for similar purposes in this vein can be found at
https://github.com/SSPmethods.
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