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Summary

Ordinary differential equations (ODEs) are used to model a vast range of physical and other
phenomena. They also arise in the discretization of partial differential equations. In most
cases, solutions of differential equations must be approximated by numerical methods. The
study of the properties of numerical methods for ODEs comprises an important and large
body of knowledge. NodePy (available from https://github.com/ketch/nodepy, with docu-
mentation at https://nodepy.readthedocs.io/en/latest/) is a software package for designing
and studying the properties of numerical ODE solvers. For the most important classes of
methods, NodePy can automatically assess their stability, accuracy, and many other proper-
ties. NodePy has also been used as a catalog of coefficients for time integration methods in
PDE solver codes.

Statement of need

There are many software packages that implement ODE solvers with the purpose of efficiently
providing numerical solutions; in contrast, the purpose of NodePy is to facilitate understanding
of the properties of the solver algorithms themselves. In this sense, it is a sort of meta-software,
consisting of algorithms whose purpose is to compute properties of other algorithms. It also
serves as a reference, providing precise definitions of many of the algorithms themselves.
NodePy is written entirely in Python and provides software implementations of many of the
theoretical ideas contained for instance in reference texts on numerical analysis of ODEs
(Hairer et al., 1993; Hairer & Wanner, 1996). It also contains implementations of many
theoretical ideas from the numerical analysis literature. The implementation focuses on the
two most important classes of methods; namely, Runge-Kutta and linear multistep methods,
but includes some more exotic classes. NodePy provides a means for numerical analysts to
quickly and easily determine the properties of existing methods or of new methods they may
develop.
NodePy development has been motivated largely by research needs and it has been used in
a number of papers (including some written by non-developers; e.g. Jin (2019) and Horváth
(2019)) and also as a teaching tool for graduate-level numerical analysis courses. It relies on
both SymPy (Meurer et al., 2017) and NumPy (Oliphant, 2006; Walt et al., 2011) in order
to provide either exact or floating-point results based on the nature of the inputs provided. It
makes use of Matplotlib (Hunter, 2007) for all graphical output.
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Features

NodePy includes object-oriented representations of the following classes of numerical methods:

• Runge-Kutta methods
– Explicit and implicit
– Embedded pairs
– Classes of low-storage methods
– Dense output formulas
– Perturbed/additive and downwind methods

• Linear multistep methods
• Two-step Runge-Kutta methods
• Additive (IMEX) linear multistep methods

The framework is designed to include general linear methods and even more exotic classes. Any
method within these classes can be generated simply by entering its coefficients. Coefficients
for many methods are catalogued or can be automatically generated within NodePy, including:

• Dozens of specific Runge-Kutta methods and pairs
• General extrapolation methods, of any order of accuracy, based on a variety of building-

block schemes and optionally including an error estimator
• Deferred correction methods
• Optimal strong stability preserving (SSP) Runge-Kutta methods
• Adams-Bashforth, Adams-Moulton, and BDF methods of any order
• A number of other specialized families of methods

For all of these numerical schemes, NodePy provides methods and functions to compute many
of their properties – too many to list here. The theory on which most of these properties
are based is outlined in standard references (Hairer et al., 1993; Hairer & Wanner, 1996).
Many other properties are based on recent research; usually the method docstring includes a
reference to the relevant paper. Implementations of the methods themselves are also included
as a convenience, though they are not the primary purpose and are not expected to be efficient
since they are coded in pure Python. Additional intermediate objects, such as the absolute
stability function of a method, are given their own software representation and corresponding
methods.
Additional features are provided to facilitate the analysis and testing of these numerical meth-
ods. This includes a range of initial value problems for testing, such as the stiff and non-stiff
DETEST suites, and a few simple PDE semi-discretizations. Also included is a library for
dealing with rooted trees, which are a class of graphs that play a key role in the theory of
Runge-Kutta methods.
NodePy is documented primarily through the Python docstrings for each method, most of
which contain examples that also serve as tests (“doctests”). These tests are executed au-
tomatically for all new commits and pull requests using the Travis continuous integration
service. Some higher-level documentation is also available at https://nodepy.readthedocs.io/
en/latest/, but it is not intended to be comprehensive.

Related research and software

We are not aware of other software packages with a similar purpose. NodePy development
has proceeded in close connection to the RK-Opt package (David I. Ketcheson et al., 2020)
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(https://github.com/ketch/RK-Opt). Whereas NodePy is focused in the analysis of numerical
methods, RK-Opt is focused more on their design through the use of numerical optimization
to search for optimal coefficients tailored to specific desired properties. A common workflow
involves generating new methods with RK-Opt and then studying their properties in more
detail using NodePy.
Some of the research projects that have made use of NodePy (most of which have led to its
further development) include development of:

• Strong stability preserving (SSP) Runge-Kutta methods (Hadjimichael et al., 2013;
David I. Ketcheson et al., 2009; David I. Ketcheson, 2008)

• SSP general linear methods (Bresten et al., 2017; David I. Ketcheson et al., 2011)
• Low-storage Runge-Kutta methods (David I. Ketcheson, 2010)
• Additive and downwind SSP Runge-Kutta methods (Higueras et al., 2018; David I.

Ketcheson, 2011)
• High-order parallel extrapolation and deferred correction methods (David I. Ketcheson

& bin Waheed, 2014)
• SSP linear multistep methods (Hadjimichael et al., 2016; Hadjimichael & Ketcheson,

2018)
• Dense output formulas for Runge-Kutta methods (David I. Ketcheson et al., 2017)
• Internal stability theory for Runge-Kutta methods (David I. Ketcheson et al., 2014)
• Embedded pairs for Runge-Kutta methods (Conde et al., 2018; Horváth, 2019)

Additional recent applications include (Jin, 2019; David I. Ketcheson, 2019; Norton, 2015;
Nüßlein et al., 2020; Ranocha, 2019). As an example of a completely different kind of use,
in the fluid dynamics code SpectralDNS, NodePy is used simply for convenience as a way to
enable usage of a range of ODE solvers; here NodePy is used only for retrieving the coefficients
and not for the time-stepping implementation. This facilitated the work in (David I. Ketcheson
et al., 2020), for instance. As can be seen from this list, applications have mostly stemmed
from the work of the main developer’s research group, but have recently begun to expand
beyond that.
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