
Gridap: An extensible Finite Element toolbox in Julia
Santiago Badia1 and Francesc Verdugo2

1 School of Mathematics, Monash University, Clayton, Victoria, 3800, Australia. 2 Centre
Internacional de Mètodes Numèrics en Enginyeria, Esteve Terrades 5, E-08860 Castelldefels, Spain.

DOI: 10.21105/joss.02520

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @PetrKryslUCSD
• @TeroFrondelius
• @KristofferC

Submitted: 10 July 2020
Published: 26 August 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Gridap is a new Finite Element (FE) framework, exclusively written in the Julia programming
language, for the numerical simulation of a wide range of mathematical models governed by
partial differential equations (PDEs). The library provides a feature-rich set of discretization
techniques, including continuous and discontinuous FE methods with Lagrangian, Raviart-
Thomas, or Nédélec interpolations, and supports a wide range of problem types including
linear, nonlinear, single-field, and multi-field PDEs (see (Badia, Martín, & Principe, 2018,
Section 3) for a detailed presentation of the mathematical abstractions behind the implemen-
tation of these FE methods). Gridap is designed to help application experts to easily simulate
real-world problems, to help researchers improve productivity when developing new FE-related
techniques, and also for its usage in numerical PDE courses.
The main motivation behind Gridap is to find an improved balance between computational
performance, user-experience, and work-flow productivity when working with FE libraries.
Previous FE frameworks, e.g., FEniCS (Alnæs et al., 2015) or Deal.II (Bangerth, Hartmann,
& Kanschat, 2007) usually provides a high-level user front-end to facilitate the use of the
library and a computational back-end to achieve performance. The user front-end is usually
programmable in an interpreted language like Python, whereas the computational back-end
is usually coded in a compiled language like C/C++ or Fortran. Users can benefit from the
high-level front-end (i.e., for rapid prototyping) and simultaneously enjoy the performance
of the compiled back-end. This approach reaches a compromise between performance and
productivity when the back-end provides all the functionality required by the user. However,
it does not satisfactorily address the needs of researchers on numerical methods willing to
extend the library with new techniques or features. These extensions usually need to be done
at the level of the computational back-end for performance reasons. Thus, the researcher
is forced to develop a new code in a compiled language like C/C++ instead of benefiting
from the productivity of scripting languages like Python, incurring serious productivity losses.
In order to overcome this limitation, Gridap is fully implemented in the Julia programming
language (Bezanson, Edelman, Karpinski, & Shah, 2017). Julia combines the performance of
compiled languages with the productivity of interpreted ones by using type inference and just-
in-time compilation to generate fast code. As a result, there is no need to use two different
languages to write low-level performance code and high-level user interfaces. In addition,
writing a FE library in Julia also allows one to leverage the feature-rich ecosystem of Julia
libraries and exploit its excellent package manager. It permits a seamless coupling of Gridap
with application-specific libraries, like optimization (Dunning, Huchette, & Lubin, 2017), an
approximation of ordinary differential equations (Rackauckas & Nie, 2017), or data science
(Innes, 2018), which can certainly boost the capabilities of a FE solver.
Another major feature of Gridap is that it is not a simple Julia translation of a standard
object-oriented FE code. There are other FE libraries written in Julia that have been inspired
by standard FE frameworks, see, e.g., FinEtools (Krysl, n.d.), JuliaFEM (Frondelius & Aho,
2017), or JuAFEM (Carlsson, n.d.) (whose interface resembles Deal.II). In contrast, Gridap

Badia et al., (2020). Gridap: An extensible Finite Element toolbox in Julia. Journal of Open Source Software, 5(52), 2520. https://doi.org/
10.21105/joss.02520

1

https://doi.org/10.21105/joss.02520
https://github.com/openjournals/joss-reviews/issues/2520
https://github.com/gridap/Gridap.jl
https://doi.org/10.5281/zenodo.3999839
https://kevinmoerman.org
https://github.com/PetrKryslUCSD
https://github.com/TeroFrondelius
https://github.com/KristofferC
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02520
https://doi.org/10.21105/joss.02520


adopts a novel software design that allows one to manipulate different types of data associated
with the cells of the computational mesh in a convenient way. For instance, one can build
an object representing the elemental matrices for all cells in the mesh using high-level API
calls, without explicitly writing any for-loop. These objects representing data for all cells of
the mesh are usually lazy, meaning that the underlying data is never stored for all cells in
the mesh simultaneously. Instead, the value for a specific cell is computed on-the-fly when
needed, which certainly reduces memory requirements. This software design allows the library
developers to hide assembly loops and other core computations from the user-code, leading
to a very compact, user-friendly, syntax, while providing a high degree of flexibility for users
to define their own weak forms. A Poisson or Stokes problem can be solved with Gridap in
10-20 lines of code, as this example for the Poisson equation shows:
using Gridap

# Manufactured solutions

u(x) = x[1]^2 + x[2]

f(x) = -Δ(u)(x); g(x) = u(x)

# FE mesh (aka discrete model)

pmin = Point(0,0,0); pmax = Point(1,1,1)

cells=(8,8,8); order = 1

model = CartesianDiscreteModel(pmin, pmax, cells)

# FE Spaces

V0 = TestFESpace(model=model, reffe=:Lagrangian,

valuetype=Float64, order=order,

conformity=:H1, dirichlet_tags="boundary")

Ug = TrialFESpace(V0, g)

# Weak form

a(u,v) = ∇(u)·∇(v); l(v) = v*f

trian_Ω = Triangulation(model)

quad_Ω = CellQuadrature(trian_Ω, 2*order)

t_Ω = AffineFETerm(a,l,trian_Ω,quad_Ω)

# FE Problem and solution

op = AffineFEOperator(Ug,V0,t_Ω)

uh = solve(op)

# Output for visualization

writevtk(trian_Ω,"results",

cellfields=["uh"=>uh,"grad_uh"=>∇(uh)])

Other FE packages like FEniCS also achieve such compact user interfaces, but in contrast to
Gridap, they are based on a sophisticated compiler of variational forms (Kirby & Logg, 2006),
which generates, compiles and links a specialized C++ back-end for the problem at hand.
One of the limitations of this approach is that the form compiler is a rigid system that is not
designed to be extended by average users.
Gridap is an open-source project hosted at Github and distributed under an MIT license.

References

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., et al.
(2015). The FEniCS Project Version 1.5. The FEniCS Project Version 1.5, 3(100), 9–23.
doi:10.11588/ans.2015.100.20553

Badia, S., Martín, A. F., & Principe, J. (2018). FEMPAR: An Object-Oriented Parallel Finite
Element Framework. Archives of Computational Methods in Engineering, 25(2), 195–271.
doi:10.1007/s11831-017-9244-1

Badia et al., (2020). Gridap: An extensible Finite Element toolbox in Julia. Journal of Open Source Software, 5(52), 2520. https://doi.org/
10.21105/joss.02520

2

https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1007/s11831-017-9244-1
https://doi.org/10.21105/joss.02520
https://doi.org/10.21105/joss.02520


Bangerth, W., Hartmann, R., & Kanschat, G. (2007). Deal.II –A general-purpose object-
oriented finite element library. ACM Transactions on Mathematical Software, 33(4).
doi:10.1145/1268776.1268779

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. doi:10.1137/141000671

Carlsson, K. (n.d.). JuaFEM git repository. Retrieved from https://github.com/KristofferC/
JuAFEM.jl

Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A modeling language for mathematical
optimization. SIAM Review, 59(2), 295–320. doi:10.1137/15M1020575

Frondelius, T., & Aho, J. (2017). JuliaFEM - open source solver for both industrial and
academia usage. Rakenteiden Mekaniikka, 50(3), 229–233. doi:10.23998/rm.64224

Innes, M. (2018). Flux: Elegant machine learning with Julia. Journal of Open Source Soft-
ware, 3(25), 602. doi:10.21105/joss.00602

Kirby, R. C., & Logg, A. (2006). A compiler for variational forms. ACM Transactions on
Mathematical Software, 32(3), 417–444. doi:10.1145/1163641.1163644

Krysl, P. (n.d.). FinEtools git repository. Retrieved from https://github.com/
PetrKryslUCSD/FinEtools.jl

Rackauckas, C., & Nie, Q. (2017). DifferentialEquations.jl – A Performant and Feature-Rich
Ecosystem for Solving Differential Equations in Julia. Journal of Open Research Software,
5(1). doi:10.5334/jors.151

Badia et al., (2020). Gridap: An extensible Finite Element toolbox in Julia. Journal of Open Source Software, 5(52), 2520. https://doi.org/
10.21105/joss.02520

3

https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1137/141000671
https://github.com/KristofferC/JuAFEM.jl
https://github.com/KristofferC/JuAFEM.jl
https://doi.org/10.1137/15M1020575
https://doi.org/10.23998/rm.64224
https://doi.org/10.21105/joss.00602
https://doi.org/10.1145/1163641.1163644
https://github.com/PetrKryslUCSD/FinEtools.jl
https://github.com/PetrKryslUCSD/FinEtools.jl
https://doi.org/10.5334/jors.151
https://doi.org/10.21105/joss.02520
https://doi.org/10.21105/joss.02520

	Summary
	References

