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Summary

Disimpy is a simulator for generating diffusion-weighted magnetic resonance imaging (dMRI)
data that is useful in the development and validation of new methods for data acquisition and
analysis. Diffusion of water is modelled as an ensemble of random walkers whose trajecto-
ries are generated on an Nvidia (Nvidia Corporation, Santa Clara, California, United States)
CUDA-capable (Nickolls, Buck, Garland, & Skadron, 2008) graphical processing unit (GPU).
The massive parallelization results in a significant performance gain, enabling simulation ex-
periments to be performed on standard laptop and desktop computers. Disimpy is written in
Python (Python Software Foundation), making its source code very approachable and easily
extensible.

Statement of need

Since the diffusion of water in biological tissues is restricted by microscopic obstacles such as
cell organelles, myelin, and macromolecules, dMRI enables the study of tissue microstructure
in vivo by probing the displacements of water molecules (Behrens & Johansen-Berg, 2009) . It
has become a standard tool in neuroscience (Assaf, Johansen-Berg, & Thiebaut de Schotten,
2019) , and a large number of data acquisition and analysis methods have been developed to
tackle the difficult inverse problem of inferring microstructural properties of tissue from the
dMRI signal (Novikov, Fieremans, Jespersen, & Kiselev, 2019) .
Simulations have played an important role in the development of the field because they do not
require the use of expensive scanner time and they provide a powerful tool for investigating
the accuracy and precision of new methods, e.g., (Tournier, Calamante, & Connelly, 2007).
Generally, dMRI simulations are based on modelling diffusion inside some geometry to obtain
a solution to the diffusion equation, e.g., (Ianuş, Alexander, & Drobnjak, 2016; Li et al.,
2019), or modelling diffusion using a more generalizable Monte Carlo approach, e.g., (Hall
& Alexander, 2009; Rafael-Patino et al., 2020). The Monte Carlo method enables the use
of complex and realistic tissue microstructure models, e.g., (Callaghan, Alexander, Palombo,
& Zhang, 2020), and can be significantly accelerated using GPU computing, e.g., (Nguyen,
Hernández-Garzón, & Valette, 2018).
Here, we present Disimpy, a GPU-accelerated dMRI simulator that enables a large amount of
synthetic data to be generated on standard desktop and laptop computers without needing to
access high performance computing clusters. Disimpy is written in Python, making its source
code very approachable to researchers with no prior experience in GPU computing.
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Features

Disimpy uses efficient numerical methods from Numpy (Van der Walt, Colbert, & Varoquaux,
2011) and Scipy (Virtanen et al., 2020) . Numba (Lam, Pitrou, & Seibert, 2015) is used to
compile Python code into CUDA kernels and device functions (Nickolls et al., 2008) which are
executed on the GPU. The random walker steps are generated in a massively parallel fashion
on individual threads of one-dimensional CUDA blocks, resulting in a performance gain of over
an order of magnitude when compared to Camino (Hall & Alexander, 2009)  , a popular dMRI
simulator written in Java (Figure 1). Given that random walker Monte Carlo dMRI simulations
require at least 104 random walkers for sufficient convergence (Hall & Alexander, 2009) , it is
important that Disimpy’s runtime does not linearly depend on the number of random walkers
until the number of walkers is in the thousands or tens of thousands, depending on the GPU.
Diffusion can be simulated without restrictions, inside analytically defined geometries (cylin-
ders, spheres, ellipsoids), and in arbitrary geometries defined by triangular meshes (Hall,
Nedjati-Gilani, & Alexander, 2017; Panagiotaki et al., 2010) (Figure 2). Importantly, the
random walk model of diffusion is able to capture time-dependent diffusion.
Disimpy supports arbitrary diffusion encoding gradient sequences, such as those used in con-
ventional pulsed field gradient experiments (Stejskal & Tanner, 1965) as well as the recently
developed q-space trajectory encoding (Eriksson, Lasic, & Topgaard, 2013; Sjölund et al.,
2015) . Useful helper functions for generating and manipulating gradient arrays are provided.
Synthetic data from multiple gradient encoding schemes can be generated from the same
simulation.
Documentation, tutorial, and contributing guidelines are provided at https://disimpy.
readthedocs.io/.

Signal generation

Signal generation in Disimpy follows the framework established in (Hall & Alexander, 2009) 
which is briefly summarized here. Equation 1 and Equation 2 describe theory. Equation 3,
Equation 4, and Equation 5 describe the numerical implementation in Disimpy.
In a dMRI experiment, the target nuclei are exposed to time-dependent magnetic field gradients
which render the signal sensitive to diffusion. During the experiment, the spin of a nucleus
experiences a path-dependent phase shift given by

ϕ(t) = γ

∫ t

0

B0 +G(t′) · r(t′)dt′, (1)

where γ is the gyromagnetic ratio of the nucleus, B0 is the static main magnetic field of the
scanner, G(t) is the diffusion encoding gradient, and r(t) is the location of the nucleus. G
and B0 change sign after the application of the refocusing pulse.
An imaging voxel contains an ensemble of nuclei for which the total signal is given by

S = S0

∫ ∞

−∞
P (ϕ) exp (iϕ) dϕ, (2)

where P is the spin phase distribution and S0 is the signal without diffusion-weighting while
keeping other imaging parameters unchanged.
In Disimpy, diffusion is modelled as a three-dimensional random walk over discrete time. The
steps, which are randomly sampled from a uniform distribution over the surface of a sphere
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using the xoroshiro128+ pseudorandom number generator (Blackman & Vigna, 2018), have
a fixed length

l =
√
6 ·D · dt, (3)

where D is the diffusion coefficient and dt is the duration of a time step. At every time point
in the simulation, each walker accumulates phase given by

dϕ = γG(t) · r(t)dt. (4)

At the end of the simulated dynamics, the normalized diffusion-weighted signal is calculated
as the sum of the real parts of signals from all random walkers

S =

N∑
j=1

Re (exp (iϕj)) , (5)

where N is the number of random walkers.
The initial positions of the random walkers are drawn from a uniform distribution across the
diffusion environment. When a random walker collides with a restricting barrier, it is elastically
reflected off the collision point in such a way that the random walker’s total path length during
dt is equal to l.

Figures

Figure 1: Performance comparison between Disimpy and Camino, a popular dMRI simulator that
runs single-threaded on the CPU. The comparison was performed on a desktop computer with an
Intel Xeon E5-1620 v3 3.50 GHz x 8 CPU and an Nvidia Quadro K620 GPU. The simulations were
performed using a mesh consisting of 104 triangles, shown in Figure 2.
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Figure 2: Example of diffusion in an environment defined by a triangular mesh. (A) Example mesh of
104 triangles defining the synthetic voxel consisting of 100 spheres with gamma distributed radii. Mesh
kindly provided by Gyori (Gyori, Hall, Clark, Alexander, & Kaden, 2020) . (B) Example trajectories
of 100 random walkers whose initial positions were randomly positioned inside the spheres. Some
spheres contain more than one walker. (C) Example trajectories of 100 random walkers outside the
spheres.
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