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Summary

A common challenge in scientific and technical domains is the quantitative description of
geometries and shapes, e.g. in the analysis of microscope imagery or astronomical observation
data. Frequently, it is desirable to go beyond scalar shape metrics such as porosity and surface
to volume ratios because the samples are anisotropic or because direction-dependent quantities
such as conductances or elasticity are of interest. Popular analysis software such as ImageJ and
SExtractor provide only limited tooling for higher-order anisotropy characterization; usually
only the tensor of inertia (rank 2) is available.
Minkowski Tensors are a systematic family of versatile and robust higher-order shape de-
scriptors, originating in integral geometry, see Schröder-Turk et al. (2011) for an introduc-
tion and detailed references. They allow for shape characterization of arbitrary order and
promise a path to systematic structure-function relationships for direction-dependent prop-
erties. Minkowski Tensors have previously been applied to data as diverse as ice grain mi-
crostructure (G. E. Schröder-Turk et al., 2010), granular packing geometries (Schaller et al.,
2015; G. E. Schröder-Turk, Mickel, et al., 2010), astronomical data (Joby, Chingangbam,
Ghosh, Ganesan, & Ravikumar, 2019; Kerscher et al., 2001; Klatt & Mecke, 2020), neuronal
data (Beisbart, Barbosa, Wagner, & Costa, 2006), foams (Evans, Schröder-Turk, & Kraynik,
2017; Saadatfar et al., 2012) and random sets, tessellations and point patterns (Kapfer et al.,
2010; Klatt et al., 2017). An accessible introduction to Minkowski Tensors can be found on
www.morphometry.org.
Here, we present papaya2, a C++ library which facilitates computation of Irreducible
Minkowski Tensors for two-dimensional geometries and shapes, including planar objects
bounded by polygonal contours, collections of points (point patterns) and greyscale pixel
data. This library is accompanied by example programs and bindings for Python, Matlab,
and the JavaScript language.
Papaya2 is a rewrite of papaya with a library interface, support for Irreducible Minkowski
Tensors and interpolated marching squares, and extensions to Matlab, JavaScript and Python
provided. While the tensor of inertia is computed by many tools, we are not aware of other
open-source software which provides higher-rank shape characterization in 2D.
For the analysis of the examples in this paper, we employ our interactive online resource
Morphometer which uses papaya2 for its computations.

C++ library papaya2

The C++ 11 library papaya2 contains the core algorithms to compute Irreducible Minkowski
Tensors of two-dimensional geometries. It processes both polygonal and 2D image input data.
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papaya2 is a header-only template library designed to operate on user data structures. We
bundle several example programs which can be adapted to user requirements, or employed
directly for simple analyses (see section Demos).
The main components of the library are defined in the header file <papaya2.hpp>. Analysis
results are returned in a MinkowskiAccumulator object, which offers accessors to retrieve
common morphometric data, including the following:

• area() The 2D volume (area) enclosed by the geometry

• perimeter() The perimeter (boundary length) of the geometry

• msm(s) The s-th Minkowski structure metric qs, see Morphometry page and Mickel,
Kapfer, Schröder-Turk, & Mecke (2013) for details

• imt(s) The s-th Irreducible Minkowski Tensor Ψs, see previous item for details

The library provides convenient wrapper functions which encapsulate common analysis tasks.
In general, these functions are C++ function templates which operate on user data struc-
tures. User-supplied data structures need to include some required methods and operators as
documented in the headers. The most important entrypoints are

• papaya2::imt_polygon: compute the Irreducible Minkowski Tensors of closed simple
polygons, specified as a sequence of vertices in counterclockwise order.

• papaya2::imt_interpolated_marching_squares: computes the Irreducible
Minkowski Tensors of an excursion set of a single channel of a raster graphics image
(bitmap). An extended version of the Marching Squares algorithm is used which
computes interpolated contours from 2x2 neighborhoods, see Mantz, Jacobs, & Mecke
(2008) for details. The input data is passed to papaya2 by reference via a suitable
adapter class to avoid copies. There are several examples of adapter classes provided,
as well as a copying container (BasicPhoto).

• papaya2::minkowski_map_interpolated_marching_squares: implements the
Minkowski map algorithm (Schröder-Turk et al., 2010) for a space-resolved anisotropy
analysis.

The supplementary header <papaya2/voronoi.hpp> implements the Minkowski Tensor anal-
ysis of point patterns via the Voronoi tessellation approach (Kapfer et al., 2010). The demo
ppanalysis exemplifies how to use this header file.

Application Examples

Here we show some examples analyzed in the Morphometer web application, which uses
papaya2.js, the JavaScript version of the papaya2. Morphometer provides rapid analysis
of small amounts of data (up to 1000 points, or 500x500 pixels). For routine analysis we
recommend using the ppanalysis and imganalysis demos or Python/Matlab bindings.
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Figure 1: Minkowski Tensor analysis of a polygon in Morphometer.

Minkowski Tensors can be applied to different types of data:

• Single polygons: s-fold symmetric polygons are characterized by high values of qs.
Figure 1 shows a polygon with approximates an equilateral triangle. Therefore, we find
high values of q3, q6, q9, etc. The distinguished directions of each Ψs are depicted on
the right of the qs bar diagram.

Figure 2: Minkowski Tensor analysis of a point pattern induced by a granular crystal cluster.

• Point patterns can be, for instance, realizations of abstract point processes or data of
physical particle systems. For the Minkowski Tensor analysis, a Voronoi tessellation
of the points is constructed and Minkowski Tensors of the individual Voronoi cells are
computed. Figure 2 (left) shows a hexagonal crystal cluster surrounded by an amorphous
background. The Minkowski structure metric q6 (indicated by the color of the Voronoi
cells) is very well suited to detect hexagonal crystalline structures. The presence of
ideal hexagonal cells is demonstrated by the peak at q6 = 1 in the histogram on the
right-hand side.
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Figure 3: Minkowski Tensor analysis of a greyscale image: a Gaussian random field.

• Greyscale images can also be analyzed in terms of Minkowski Tensors. Figure 3 (left)
shows a detail of an anisotropic Gaussian random field, which is converted into a binary
image by thresholding (center) and analyzed using Minkowski Tensors (right). The
significant q2 value in the Minkowski analysis (right) shows that the random field has
a preferred direction, which is also reflected by the distinguished direction marker (red
color).

Demos and language bindings

In the directory demos, we provide a number of example programs which use the library for
data analysis. These are meant to be modified and adapted to user needs as required. For
simple analyses, they can be used directly, see the README file in the demos folder.
We also provide bindings of the library for Python, Matlab and JavaScript.
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