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Summary

Biomechanics is at the interface of several fields of science, such as mechanics, human physi-
ology and robotics. Although this transdisciplinarity encourages the emergence of new ideas,
the variety of data to analyze simultaneously can be overwhelming. Commonly biomechan-
ical datasets are composed of skin markers trajectories (termed as markers), contact forces,
electromyography (EMG) signal, inertial measurement units (IMU) kinematics, etc., which by
nature are not straightforward to combine. It is at their meeting point—the body movement—
that biorbd steps in; bio standing for biomechanics and rbd for rigid body dynamics.
biorbd is a feature-based development library that targets the manipulation of biomechanical
data in a comprehensive and accessible manner. For a given musculoskeletal model, it provides
functions for inverse flow—i.e., from markers to EMG—and direct flow—i.e., from EMG to
markers.
Since biomechanics often requires computationally expensive or real-time computations, the
core of biorbd is written in C++. Although this language provides fast computations, it lacks
the flexibility of higher-level languages. To meet the needs of the biomechanics community,
Python and MATLAB binders are provided with biorbd. As a result, biorbd can elegantly be
implemented to common workflows of researchers without compromising the required speed.
Finally, biomechanical data are often multidimensional and almost always time-dependent
which can be challenging to visualize. To help with that, bioviz (Michaud & Begon, 2018),
a Python visualizer, was purposely designed. This visualizer allows animating the model,
record videos, and, for models that include muscles, plot muscular outputs against various
features of the movement.

A biorbd overview, the inverse and direct flow

Biomechanical analyses are usually based on one (or a mixture) of the inverse or direct flow
(Kainz et al., 2016). Briefly, the former uses measurements from a movement (e.g., markers)
and infers its cause, while the latter assumes control (e.g., EMG) and outputs the resulting
kinematics.

Inverse flow

Inverse kinematics: Estimates the generalized coordinates (q)—i.e., the body kinematics—
from body sensor measurements (e.g., markers, IMU, etc.). The main algorithm implemented
is the Extended Kalman Filter (Fohanno et al., 2010) which by design facilitates the merging
of multiple data sources and takes care of missing data.
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Inverse dynamics: Estimates the generalized forces (τ) producing a given generalized acceler-
ation (q̈) (the second time derivative of q):

τ = M(q)q̈ +N(q, q̇)

where q̇ is the generalized velocities, M(q) is the mass matrix and N(q, q̇) are the nonlinear
effects.
Static optimization: Estimates the muscle activations (α) producing a given τ (Anderson &
Pandy, 2001). It minimizes the muscle activation p-norm (p usually being 2) that matches a
given τ using nonlinear optimization (Ipopt, Wächter & Biegler, 2006).

minimize
α∈Rm

∥α∥p

subject to τmusi(α, q, q̇)− τkini(q, q̇, q̈) = 0, i = 1, . . . , n

0 ≤ αtj ≤ 1, j = 1, . . . ,m

where τmusi(α, q, q̇) and τkini
(q, q̇, q̈) are τ computed from muscle forces (Fmus(α, q, q̇)) and

inverse dynamics, respectively.

Direct flow

Muscle activation dynamics: Estimates the muscle activation derivative (α̇) from the muscle
excitation—that is the calcium release in the muscle that triggers the muscle contraction.
Multiple activation/excitation dynamics are implemented (e.g., Manal & Buchanan, 2003;
Thelen, 2003).
Muscular joint torque: Estimates the τmus from muscle forces (Fmus(q, q̇, α)) (Sherman et
al., 2010), estimated from α using a muscle model (e.g., Hill, 1938; Thelen, 2003):

τmus = Jmus(q)
TFmus(q, q̇, α)

where Jmus(q) is the muscle lengths Jacobian.
Forward dynamics: Estimates the q̈ from a given τ :

q̈ = M(q)−1τ −N(q, q̇)

All the forward dynamics implemented in RBDL (Felis, 2017) are available.
Forward kinematics: Estimates the model kinematics outputs (e.g., markers, IMU) from a
given q, after integrating twice q̈.

The dependencies

biorbd takes advantage of efficient back ends, especially the RBDL and CasADi libraries.
RBDL, written by Martin Feliz (Felis, 2017), implements Featherstone equations of spatial
geometry (Featherstone & Orin, 2000), successfully used in the field of robotics (Diehl et
al., 2006; Kurfess, 2018; Macchietto et al., 2009). RBDL provides the computational core for
body dynamics. biorbd extends RBDL by giving commonly used biomechanics nomenclature,
and by adding biomechanical modules, amongst others. RBDL is based on the highly efficient
C++ linear algebra library Eigen (Guennebaud et al., 2010). Although Eigen is flexible and
fast enough for most of the common usage, it cannot automatically provide derivatives of
functions. Therefore, RBDL was also augmented with the algorithmic differentiation library
CasADi (Andersson et al., 2019). CasADi allows computing at low cost the derivatives of
almost all the functions in RBDL and biorbd. This is particularly useful when using biorbd
in a gradient-based optimization setting.
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Statement of need

OpenSim (Seth et al., 2018) and Anybody (Damsgaard et al., 2006) are state-of-the-art
biomechanics software that provides similar analysis flows with advanced user interface. Anyb
ody being a closed and proprietary software, the reason to create another library for the open-
source community is self-explanatory. Conversely, OpenSim is open-source and well established
in the biomechanics community.
Nevertheless, in line with the idea that simulation software in biomechanics should be validated
in multiple ways (Hicks et al., 2015), providing similar tools but different in their approach
allows the community to cross-validate the different implementation of the algorithms. For
instance, two papers (Kim et al., 2018; Trinler et al., 2019) recently compared the outputs of
Anybody and OpenSim and came to different results. Although the authors provided plausible
explanations for these differences, due to the closed-source nature of Anybody, they had to
assume that the implementation of the algorithms are flawless in both software. However,
since a direct comparison between the actual codes is impossible, this is not verifiable. Having
multiple open source software that produces similar ends by different means is a quality
assurance for the end users: “Do not put all your eggs in one basket.” To the best of our
knowledge, there is no other open-source software that provides a complete direct and inverse
flow in biomechanics. Therefore, in our opinion, biorbd and OpenSim are complementary.

Previous usage of biorbd

biorbd was used in most of the project of the Laboratoire de Simulation et Modélisation du
Mouvement (S2M); particularly in analysis settings (Desmyttere et al., 2020; Jackson et al.,
2012; Verdugo et al., 2020) and simulation settings (Bélaise et al., 2018; Moissenet et al.,
2019) for a wide variety of movements (walking, piano playing, upper limb maximal exertions,
etc.) More recently, an optimal control framework for biomechanics (bioptim, Michaud &
Begon, 2020) based on Ipopt (Wächter & Biegler, 2006) and ACADOS (Verschueren et al.,
2019) was developed around biorbd.
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