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Summary

Polarizable force fields have changed the landscape of biomolecular simulation, mostly by
featuring improved electrostatic potential energy terms (Jing et al., 2019). These novel energy
functions allow environment-driven changes in charge distribution, which yield simulations
with improved geometries and molecular properties. In particular, the AMOEBA polarizable
force field exhibits two fundamental changes compared to more traditional fixed charge force
fields (Shi et al., 2013; Zhang et al., 2018). The first one relates to permanent electrostatics,
expressed in AMOEBA in terms of atomic multipoles (truncated at quadrupoles) that account
for anisotropy in the computed charge distributions. The second one represents polarizability
through an induced dipole term that can respond to the chemical environment. These modified
terms make the AMOEBA force field more physically grounded than other force fields and is
the basis for more realistic simulations of biomolecular systems.
Improved electrostatics with AMOEBA give a unique opportunity to accurately compute elec-
tric fields, powerful metrics of catalytic activity in enzymes and other systems (Bhowmick,
Sharma, & Head-Gordon, 2017; Vaissier, Sharma, Schaettle, Zhang, & Head-Gordon, 2018;
Vaissier Welborn, Ruiz Pestana, & Head-Gordon, 2018). Electric fields projected onto spe-
cific bonds report on the effect of the surroundings (interacting via coulombic interactions,
solvent effects, hydrogen bonding or other forces, all mostly electrostatic in nature) on the
flow of electrons along these bonds. Therefore, projected electric fields are correlated to the
probability of breaking these bonds, making them a useful probe of chemical reactivity.
ELECTRIC (J. Nash & Welborn, 2020) is a MolSSI Driver Interface (MDI) (Taylor A. Barnes,
2020; Taylor Arnold Barnes, 2020) driver that utilizes Tinker (Rackers et al., 2018) to analyze
specific components of electric fields that are modeled using the AMOEBA force field. ELECTR
IC parses Tinker trajectories and orchestrates additional Tinker calculations in order to project
components of the electric fields onto user-defined bonds (specified by two atoms). It outputs
the field in MV/cm, which is the sum of the direct field (from permanent electrostatics)
and the induced field (from the induce dipole term), projected onto the bond unit vector (i.e.,
normalized by the bond length). ELECTRIC enables splitting of the total field into contributions
from different components of the system, by molecules or by residues as specified in a reference
PDB file. In summary, ELECTRIC was designed to expand quantitative system characterization
via the computation of electric fields with user-friendly processing tools of Tinker-AMOEBA
simulations.
In practice, the user needs a Tinker trajectory file (i.e., filename.arc), a Tinker input file (i.e.,
tinker.key) stripped from any keywords corresponding to periodic boundary conditions and
a Tinker reference snapshot (filename.xyz - this can be the first frame in filename.arc)
where the dimensions of the box, usually printed on line 2, has been deleted. Tinker is then
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launched as an MDI engine before the ELECTRIC driver. Options regarding the electric fields
calculations, such as probe index number, number of frames at the beginning of the trajectory
file to skip (equilibration procedure), reference PDB file, etc. are specified as command line
arguments when launching the driver. A complete usage procedure is provided in the README
file.

Statement of Need

Since electric fields assist the motion of charges such as ions or electrons, they can link
structure to function in molecular dynamics simulations. By taking advantage of their addi-
tivity property, we can decompose the total electric field into contributions from each system
component (protein residues, solvent molecules, etc.). While this approach has already been
used to probe electron flow along the bonds that break and form during a catalyzed reaction
(Bhowmick et al., 2017; Vaissier et al., 2018), its applicability reaches many other research
areas as it can also be used to probe ion transport or electron reorganization upon molecular
binding, for example.

Mathematics

The electric field at atom i, E⃗i, has components defined as:
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as also defined in Bhowmick et al. (2017).
Similar equations can be written for the y- and z-components of the field. The field projected
onto a specific bond, say bond ij between atoms i and j, is then calculated as:

Eij
proj =

(
E⃗i + E⃗j

2

)
.u⃗ij , (5)

where Eij
proj is the electric field projected onto bond ij and u⃗ij the unitary vector defining

bond ij.
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