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Summary
OCTOPUS is a Python-based software for correction of off-resonance artifacts in Magnetic Res-
onance (MR) images. It implements three different methods for correction of both Cartesian
and non-Cartesian data: Conjugate Phase Reconstruction (CPR), frequency-segmented CPR
and Multi-Frequency Interpolation(MFI). OCTOPUS is easy to integrate into other two and
three-dimensional reconstruction pipelines, which makes the tool highly flexible and customiz-
able.

Statement of need
Off-resonance is an MR artifact which occurs due to field inhomogeneities, differences in tissue
susceptibilities and chemical shift (Noll et al., 1991). These phenomena can cause the phase
of off-resonant spins to accumulate along the read-out direction, which can turn into blurring,
geometrical distortion and degradation in the reconstructed image (Luk-Pat & Nishimura,
2001). Images acquired using long readout trajectories and/or at high fields where the field
homogeneity is lower are more prone to this problem. However, such acquisition scenarios also
deliver desirable properties, such as short scanning times, gradient efficiency, motion tolerance,
and better signal-to-noise ratio (Chen & Meyer, 2008).
Multiple successful off-resonance correction methods have been reported in the literature
(Schomberg, 1999). Most of them are based on Conjugate Phase Reconstruction (CPR),
a method that counteracts the accumulated phase by demodulating k-space data with its
conjugate (Maeda et al., 1988). Faster and more efficient implementations that the original
CPR have been developed, such as frequency-segmented CPR (Noll et al., 1992) and Multi-
Frequency Interpolation (MFI) (Man et al., 1997). Frequency-segmented CPR reconstructs
the corrected image by combining the pixels of “L” base images according to each pixel value
on a field map. Each base image corresponds to the data demodulated at a fixed frequency,
with the frequency values for each base image equally spaced within the field map frequency
range. MFI works in a similar way as frequency-segmented CPR, with main differences being
that it requires a smaller number of base images (L) and that these images are added together
into the corrected image using a set of linear coefficients derived from the field map.
One can find optimised off-resonance correction capabilities within existing packages. Ex-
amples are: SPIRiT (Lustig & Pauly, 2010), a MATLAB-based approach for auto-calibrated
parallel imaging reconstruction; Ostenson’s MFI implementation for Magnetic Resonance Fin-
gerprinting (MRF) (Ostenson et al., 2017); FUGUE, a tool for Echo-Planar Imaging (EPI)
distortion correction part of the FSL library (Jenkinson et al., 2012); and the MIRT toolbox, a
MATLAB-based MRI reconstruction package that offers field inhomogeneity correction using
iterative reconstruction methods (Fessler et al., 2005; Sutton et al., 2003). Nylund’s thesis
(Nylund, 2014) also contains source MATLAB code for fs-CPR and MFI correction of spiral
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images.
All of these implementations are highly specific, defined for a particular k-space trajectory or
application, and/or include a single correction method. SPIRiT is devoted to correct data
acquired using parallel imaging methods; Ostenson’s package only corrects MRF spiral data
and implements only one correction method; and FUGUE corrects distortion solely on EPI
images. These limitations typically lead researchers to adapt their data in an attempt to fit
them into the available pipelines or to write their own version of the methods. Either approach
results in a significant investment of time and effort and can generate isolated implementations
and inconsistent results. Furthermore, most of the available packages are also MATLAB-based,
which unlike Python, requires users to pay a license fee.
OCTOPUS is aimed at filling this gap in MR off-resonance correction packages. It provides
Python open-source code for three fundamental methods (CPR, fs-CPR, and MFI). The im-
plementation is independent of the application and the image acquisition scheme, easing its
integration into any reconstruction pipeline. OCTOPUS can also run in the browser through
Google Colab, a freely hosted Jupyter notebook environment that allows one to execute Python
code in the browser. Given this feature, OCTOPUS is the first zero-footprint off-resonance cor-
rection software, meaning it doesn’t require software download, installation, or configuration
on a user’s local machine.

Functionality and limitations
OCTOPUS is aimed at MR researchers working with long-readout or field-inhomogeneity sen-
sitive k-space trajectories or MR acquisition methods. A short demo is provided in the next
section. OCTOPUS corrects or reduces geometric distortion and/or blurring present in the
images due to off-resonance effects by leveraging other Python libraries, specifically NumPy
(Harris et al., 2020), SciPy (Virtanen et al., 2020), scikit-image (Walt et al., 2014), NiBa-
bel(Brett et al., 2020), Matplotlib (Hunter, 2007), OpenCV (Itseez, 2015), Pydicom (Mason
et al., 2020), and PyNUFFT(Lin, 2013–). The expected output is an image with recovered,
sharper edges and undistorted shape.
Also, OCTOPUS corrects off-resonance independently of whether the trajectory used to acquire
the data was Cartesian or non-Cartesian. The input of the correction methods can be either
image or raw data. However, using raw data as input is more efficient and may avoid non
Cartesian trajectory-dependent artifacts. OCTOPUS is also able to correct 3D multi-slice and
multi-channel data by feeding it to the tool in a slice- and channel-wise manner and then
applying channel combination with the user’s method of choice.
Presently, the software limitations include correction restricted to data acquired in the absence
of acceleration techniques, long correction times for large datasets, and degraded correction
quality in the presence of highly-inhomogeneous fields. Additionally, the tool has been only
tested on Cartesian, EPI, and spiral data.

Short demo
To illustrate the usage of the package, we performed in silico numerical simulations using a
single-shot EPI trajectory, a single-shot spiral trajectory and a simulated field map. For these
experiments we used a Shepp-Logan head phantom, which simulates a section of the skull
and is widely used to test reconstruction algorithms (Shepp & Logan, 1974). Figure 1 shows
all inputs and outputs of the experiment. The steps were:

1. Forward model simulation of off-resonance effect on a 128x128 Shepp-Logan phantom
and 256 mm2 FOV.
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• Using single-shot EPI and spiral trajectories. Figure 1 shows simplified versions of
both trajectories for visualization purposes.

• Using a simulated field map based on a blurred version of the phantom image with
frequency ranges of -/+ 100, -/+150 and -/+200 Hz.

2. Correction of the results of the forward model with CPR, fs-CPR and MFI .

Figure 1: Top row (left-right): Shepp-Logan phantom image (128x128), Simplified single-shot EPI
k-space trajectory, Simplified single-shot spiral k-space trajectory, and simulated field map (128x128).
Bottom row (left-right): EPI experiment results and Spiral experiment results.

In both experiments, ‘OCTOPUS’ successfully corrected the off-resonance induced blurring
and/or geometrical distortion. Note how the EPI-corrupted images show geometric distortion
in the phase-encode direction while spiral corrupted images show blurred and distorted edges.
To test the effect of noise on the correction performance we introduced different levels of noise
to a single-shot EPI trajectory-based simulation and measured the peak signal-to-noise ratio
(pSNR) and Structural Similarity Index (SSIM).
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Figure 2: Effect of different noise leves on OCTOPUS correction performance measured using pSNR
and SSIM.

As expected, PSNR and SSIM are reduced as the off-resonance range widens and the noise
level in the original image increases. Nevertheless, in all cases, the three implemented methods
improve the metrics with respect to the off-resonance corrupted image.
Finally, to demonstrate the correction capabilities in 3D multi-slice and multi-channel data,
we corrected phantom images of a Stack-of-Spirals acquisition with matrix size of 72x72,
FOV=240 mm2 and 54 slices. The images were acquired on a Siemens 3T Prisma scanner
using a 20-channel head coil. Figure 3 shows three representative slices and their off-resonance
corrected versions. The regions of the images highlighted in red show improved image quality
and enhaced edges.
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Figure 3: Off-resonance correction of three slices of a Stack-of-Spirals 3D acquisition.
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