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Summary
The PF library provides class and function templates that offer fast implementations for a
variety of particle filtering algorithms. Each of these algorithms is useful for a wide range of
time series models.
In this library, each available particle filtering algorithm is provided as an abstract base class
template. Once the data analyst has a specific state-space or hidden Markov model in mind,
she will pick which type(s) of particle filtering algorithm(s) to associate with that model by
including the appropriate header file. For each model-particle filter pair, she will write a class
template for her model that inherits from the particle filter’s base class template.
The details of each algorithm are abstracted away, and each algorithm’s class template’s
required functions are pure virtual methods, meaning that the data analyst will not be able
to omit any function that is required by the algorithm.
This is by no means the first C++ library to be offered that provides particle filter implementa-
tions. Other options include LibBi (Murray, 2013), Biips (Todeschini et al., 2014), Nimble
(Valpine et al., 2017) and SMCTC (Johansen, 2009). The goals of most of these software pack-
ages are different, though–users of these libraries typically write their models in a scripting
language, and that model file gets parsed into C++ code. This library, on the other hand, is
designed for users that prefer to work in C++ directly.

Statement of Need
State-space models describe a partially-observed Markov chain {(xt, yt)}t≥1 that possesses
a hidden/latent variable at each time point (denoted by xt), as well as an observed vari-
able (denoted by yt). “Filtering” is defined as obtaining the distribution of each unobserved
state/code random variable, conditioning on all of the observed information up to that point
in time. In other words, it is the task of finding

p(xt | yt, yt−1, . . . , y1). (1)

“Particle filters” are a class of algorithms that approximate this sequence of distributions with
weighted samples (termed particles). Filtering is a useful tool for a variety of applications in a
variety of fields, and it should also be mentioned that they can be used for real-time forecasting,
and they are critical component of more advanced parameter estimation algorithms.
Unfortunately, it takes time and effort to implement different particle filters well, and this is
true for two reasons. First, the mathematical notation used to describe them can be complex.
The second reason is that, even if they are correctly implemented, they can be quite slow,
limiting the number of tasks that they would be feasible for. This library attempts to provide
speed and abstraction to mitigate these two difficulties.
Additionally, this software is designed in an object-oriented manner. This allows for individual
particle filters to be used in isolation, and it also facilitates the implementation of more
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complicated algorithms that update many particle filters through many iterations in a stateful
way, possibly in parallel. For this second class of algorithms, there are usually two necessary
loops: the “outer” loop that loops over time, and the “inner” loop that iterates over each
distinct particle filter. Without an object-oriented design, there would be a third loop, which
loops over all particle samples in each particle filter. Some examples of algorithms that run
many particle filters within the overall algorithm are particle filters with parallelized resampling
schemes (Bolic et al., 2005, p. 1309.2918), particle Markov chain Monte Carlo algorithms
(Andrieu et al., 2010), importance sampling “squared” (Tran et al., 2013), and the particle
swarm algorithm (Brown, 2020).
Finally, this library is “header-only.” This will allow some users to build their own C++ project by
#include-ing relevant headers from this library and pointing the compiler at the include/pf/
directory (this is “Option 2” described in the README.md file). On the other hand, other uses
will prefer to use the CMake build procedure (this is “Option 1” in the README.md file), as
this will help build the included unit tests and more closely follows the style of the provided
example code projects.

Examples
A fully-worked example is provided with this software and is made available in the examples/
directory in the Github repository. This example considers modeling a financial time series
with a simple stochastic volatility model (Taylor, 2018) with three parameters: β, ϕ and σ. For
this model, the observable rate of return yt is normally distributed after conditioning on the
contemporaneous state random variable xt. The mean parameter of this normal distribution
will remain fixed at 0. However, the scale of this distribution will vary with the evolving xt.
When xt is relatively high, the returns will have a high conditional variance and be “volatile.”
When xt is low, the returns will be much less volatile.
The observation equation is

yt = βext/2zt (2)

where {zt}Tt=1 are independent and identically distributed (iid) normal random variates.
The state evolves randomly through time as an autoregressive process of order one:

xt = ϕxt−1 + σz′t. (3)

The collection {z′t}Tt=1 are also assumed to be iid normal random variates. At time 1, we
assume the first state follows a mean zero normal distribution: x1 = sigma/

√
1− ϕ2z′1. For

simplicity, all of our proposal distributions are chosen to be the same as the state transitions.
The file examples/svol_sisr.h provides an example of writing a class template called
svol_sisr for this model-algorithm pair. Any model-algorithm pair will make use of a
resampler type (found in include/pf/resamplers.h), sampler functions (found in incl
ude/pf/rv_samp.h), and density evaluator functions (found in include/pf/rv_eval.h).
Because you are writing a class template instead of a class, the decision of what to pass in as
template parameters will be pushed back to the instantiation site. These template parameters
are often changed quite frequently, so this design allows them to be changed only in one
location of the project. Instantiating an object after the class template has been written is
much easier than writing the class template itself. Just provide the template parameters and
the constructor parameters in the correct order. For example,
using Mod = svol_sisr<5000,1,1,mn_resampler<5000,1,double>,double>;
Mod sisrsvol(.91,.5,1.0);

instantiates the object called sisrsvol, which performs the SISR algorithm for the stochastic
volatility model using multinomial sampling on 5, 000 particles. It sets ϕ = .91, β = .5 and
σ = 1.
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As (possibly real-time, streaming) data becomes available, updating the model is accomplished
with the filter method. The call at each time point would look something like
sisrsvol.filter(yt);

The repository also provides an implementation of the “almost constant velocity model” that
is comparable to the one described in section 5.1 of (Johansen, 2009). This can be found
in the smctc_comparison_example/ directory. Comparing the two implementations, ours
makes use of more modern and higher-level C++ types and features and is slightly faster at
first glance. Our implementation is written to match as many aspects of the one provided in
SMCTC sample code as possible: both use a bootstrap filter proposal distribution, both only
retain the most recent particles instead of the entire particle trajectory, both use the same
parameters, both iterate across the same data set, and both use 100, 000 particles. Both
programs were run on Ubuntu 18.04 with an Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz
chip. Ours ran in 2.883 seconds, while the SMCTC-provided implementation ran in 5.605
seconds. However, this test is far from conclusive: these packages make use of different
random number generators, different data-reading functions, and different build procedures.
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