
TorchGAN: A Flexible Framework for GAN Training and
Evaluation
Avik Pal1 and Aniket Das1

1 Indian Institute of Technology Kanpur
DOI: 10.21105/joss.02606

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @NMontanaBrown
• @terrytangyuan

Submitted: 26 May 2020
Published: 19 October 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Abstract
TorchGAN is a PyTorch based framework for writing succinct and comprehensible code for
training and evaluation of Generative Adversarial Networks. The framework’s modular design
allows effortless customization of the model architecture, loss functions, training paradigms,
and evaluation metrics. The key features of TorchGAN are its extensibility, built-in support for
a large number of popular models, losses and evaluation metrics, and zero overhead compared
to vanilla PyTorch. By using the framework to implement several popular GAN models, we
demonstrate its extensibility and ease of use. We also benchmark the training time of our
framework for said models against the corresponding baseline PyTorch implementations and
observe that TorchGAN’s features bear almost zero overhead.

Introduction
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a class of deep genera-
tive models that formulate the model estimation problem as an adversarial game between two
neural networks, a Generator representing an implicit generative distribution, and a Discrim-
inator that differentiates between samples from said implicit distribution and the true data
distribution. The implicit distribution recovers the data distribution when the game reaches
equilibrium. Apart from being one of the most popular approaches for generative modeling
and unsupervised learning tasks in Computer Vision, with diverse applications such as photo-
realistic image generation (Brock et al., 2019; Karras et al., 2018), image super-resolution
(Ledig et al., 2017), image-to-image translation (Zhu et al., 2017) and video generation (Clark
et al., 2019; Tulyakov et al., 2018), it has also found applicability in domains such as Natural
Language Processing (Zhang et al., 2017) and Time Series Analysis (Esteban et al., 2017).
GANs generally share a standard design paradigm, with the building blocks comprising one or
more generator and discriminator models, and the associated loss functions for training them.
TorchGAN makes use of this design similarity by exposing a simple API for customizing these
blocks. The interaction between these components at training time is facilitated by a highly
robust trainer which automatically adapts to user-defined GAN models and losses. TorchGAN
provides an extensive and continually expanding collection of popular GAN models, losses,
evaluation metrics, and stability-enhancing features, which can either be used off the shelf or
easily extended or combined to design more sophisticated models effortlessly. With the above
design principles in mind, we aim to improve upon existing GAN training frameworks such as
TFGAN (Shor, 2017), HyperGAN (Community, 2016), and IBM GAN-Toolkit (Raunak Sinha,
2018) on the aspects of extensibility, the richness of the feature set and documentation.

Implementing Models in TorchGAN
The core of the TorchGAN framework is a highly versatile trainer module, responsible for
its flexibility and ease of use. The trainer requires specification of the generator and the
discriminator architecture along with the optimizers associated with each of them, represented

Pal et al., (2021). TorchGAN: A Flexible Framework for GAN Training and Evaluation. Journal of Open Source Software, 6(66), 2606.
https://doi.org/10.21105/joss.02606

1

https://doi.org/10.21105/joss.02606
https://github.com/openjournals/joss-reviews/issues/2606
https://github.com/torchgan/torchgan/
https://doi.org/10.5281/zenodo.5575758
http://arfon.org/
https://github.com/NMontanaBrown
https://github.com/terrytangyuan
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02606


as a dictionary, as well as the list of associated loss functions, and optionally, evaluation
metrics. We provide an illustrative example for training DCGAN on CIFAR10. One can either
choose from the in-built implementations of popular GAN models, losses and metrics or define
custom variants of their own with minimal effort by extending the appropriate base classes.
This extensibility is widely useful in research applications where the user only needs to write
code for the model architecture and/or the loss function. The trainer automatically handles
the intricacies of training with custom models/losses. The trainer also supports the usage of
multiple generators and discriminators, allowing training of more sophisticated models such
as Generative Multi Adversarial Networks (Durugkar et al., 2016). Performance visualization
is handled by a customizable Logger object, which, apart from console logging, currently
supports the Tensorboard and Vizdom backends.
train_dataset = dsets.CIFAR10(root='./cifar10', train=True,

transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]

), download=True)
train_loader = data.DataLoader(train_dataset, batch_size=128, shuffle=True)
trainer = Trainer(

{"generator": {"name": DCGANGenerator, "args": {"out_channels": 3,
"step_channels": 16}, "optimizer": {"name": Adam, "args":

{"lr": 0.0002, "betas": (0.5, 0.999)}}},
"discriminator": {"name": DCGANDiscriminator, "args":

{"in_channels": 3, "step_channels": 16}, "optimizer": {"name": Adam,
"args": {"lr": 0.0002, "betas": (0.5, 0.999)}}}},

[MinimaxGeneratorLoss(), MinimaxDiscriminatorLoss()], sample_size=64,
epochs=20)

trainer(train_loader)

Figure 1: Overview of TorchGAN Design.

Existing Frameworks
TorchGAN provides high-quality implementations of various GAN models, metrics for evaluat-
ing GANs, and various approaches for improving the stability of GAN training. We provide an
overview of the features that are provided off the shelf by TorchGAN and compare them with
the ones provided by other frameworks. Note that the list is not exhaustive as the modular

Pal et al., (2021). TorchGAN: A Flexible Framework for GAN Training and Evaluation. Journal of Open Source Software, 6(66), 2606.
https://doi.org/10.21105/joss.02606

2

https://doi.org/10.21105/joss.02606


and extensible structure of TorchGAN allows one to extend or modify these features, or use
them as building blocks for more sophisticated models.

Table 1: Supported features of different frameworks. Features officially supported are marked “✓,”
under active development are marked “⋆,” and those currently unsupported are left blank.

TorchGAN TFGAN IBM GAN-Toolkit HyperGAN
Vanilla GAN ✓ ✓ ✓ ✓
DCGAN ✓ ✓ ✓ ✓
Wasserstein GAN ✓ ✓ ✓ ✓
Wasserstein GAN-GP ✓ ✓ ✓ ✓
Inception Score ✓ ✓ ✓
InfoGAN ✓ ✓ ✓
CycleGAN ✓ ✓ ✓
Least Squares GAN ✓ ✓ ✓
Auxillary Classifier GAN ✓ ✓
Spectral Normalization GAN ✓ ✓ ✓
Self Attention GAN ✓ ✓
Conditional GAN ✓ ✓
Energy Based GAN ✓ ✓
Boundary Equilibrium GAN ✓
DRAGAN-GP ✓
Binary GAN ✓
Adversarial Autoencoders ✓
Historical Averaging ✓
Feature Matching ✓
Minibatch Discrimination ✓
Frechet Inception Distance ⋆ ✓ ✓
Progressive GAN ⋆ ✓
Adversarially Learned Inference ⋆ ✓
Star GAN ✓

Table 1 summarizes the features supported by a variety of open-source GAN frameworks. It
suggests that TorchGAN supports the widest variety of features among the frameworks being
considered. For comparison, we only consider the models present in the official repository
of a given framework or an associated officially maintained model-zoo/examples repository.
We avoid comparisons with projects like Pytorch-GAN1, Keras-GAN2, etc., as these are not
frameworks and hence cannot be extended to newer models.

Performance
In order to demonstrate that TorchGAN incurs zero training overhead despite the high level
of abstraction it provides, we compare the training time of TorchGAN with vanilla PyTorch
implementations of DCGAN (Radford et al., 2016), CGAN (Mirza & Osindero, 2014), BEGAN
(Berthelot et al., 2017) and WGAN-GP (Gulrajani et al., 2017). Table 2 reports the training
time for TorchGAN and Pytorch for 1 epoch, averaged over 8 runs.

1https://github.com/eriklindernoren/PyTorch-GAN
2https://github.com/eriklindernoren/Keras-GAN

Pal et al., (2021). TorchGAN: A Flexible Framework for GAN Training and Evaluation. Journal of Open Source Software, 6(66), 2606.
https://doi.org/10.21105/joss.02606

3

https://doi.org/10.21105/joss.02606


Table 2: Average Training Time: TorchGAN vs Pytorch Baselines. DCGAN is trained on CIFAR-10,
and the other models are trained on MNIST.

DCGAN CGAN WGAN-GP BEGAN
TorchGAN 15.9s ± 0.64s 21.8s ± 0.43s 30.6s ± 1.35s 86.0s ± 0.62s
Pytorch 16.7s ± 0.24s 22.4s ± 0.52s 31.1s ± 0.97s 87.0s ± 0.27s

For a fair comparison, we disable any form of logging and compute the training time using
the %timeit magic function. We train the models on the CIFAR10 (Krizhevsky, 2009) and
MNIST datasets, with a batch size of 128, on an Nvidia GTX Titan X GPU.

Conclusion and Future Work
We present the features of the TorchGAN framework and demonstrate its extensibility, ease of
use and efficiency. Future work and extensions under active development include, integration of
GAN models for video generation, generalization of the training loop to support Inference GAN
models, such that they can be conveniently modified and extended, addition of features such
as Adaptive Instance Normalization layers, and expanding the model zoo and documentation
to cover more sophisticated examples such as Multi Agent-GAN training. We also envision
the extension of the framework to domains beyond Computer Vision by adding support for
NLP and Time Series GAN models.

References
Berthelot, D., Schumm, T., & Metz, L. (2017). BEGAN: Boundary Equilibrium Generative

Adversarial Networks. http://arxiv.org/abs/1703.10717
Brock, A., Donahue, J., & Simonyan, K. (2019). Large scale GAN training for high fidelity

natural image synthesis. International Conference on Learning Representations. https:
//openreview.net/forum?id=B1xsqj09Fm

Clark, A., Donahue, J., & Simonyan, K. (2019). Efficient video generation on complex
datasets. http://arxiv.org/abs/1907.06571

Community, K. (2016). HyperGAN. In GitHub repository. https://github.com/HyperGAN/
HyperGAN; GitHub.

Durugkar, I., Gemp, I., & Mahadevan, S. (2016). Generative Multi-Adversarial Networks.
International Conference on Learning Representations. https://openreview.net/forum?id=
Byk-VI9eg

Esteban, C., Hyland, S. L., & Rätsch, G. (2017). Real-valued (medical) time series generation
with recurrent conditional gans. arXiv Preprint arXiv:1706.02633.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information
Processing Systems, 2672–2680.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved
training of wasserstein GANs. Proceedings of the 31st International Conference on Neural
Information Processing Systems, 5769–5779. ISBN: 9781510860964

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018). Progressive growing of GANs for
improved quality, stability, and variation. International Conference on Learning Represen-
tations. https://openreview.net/forum?id=Hk99zCeAb

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.

Pal et al., (2021). TorchGAN: A Flexible Framework for GAN Training and Evaluation. Journal of Open Source Software, 6(66), 2606.
https://doi.org/10.21105/joss.02606

4

http://arxiv.org/abs/1703.10717
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
http://arxiv.org/abs/1907.06571
https://github.com/HyperGAN/HyperGAN
https://github.com/HyperGAN/HyperGAN
https://openreview.net/forum?id=Byk-VI9eg
https://openreview.net/forum?id=Byk-VI9eg
https://worldcat.org/isbn/9781510860964
https://openreview.net/forum?id=Hk99zCeAb
https://doi.org/10.21105/joss.02606


Ledig, C., Theis, L., Huszar, F., Caballero, & al., et. (2017). Photo-Realistic Single Im-
age Super-Resolution Using a Generative Adversarial Network. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2017.19

Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. http://arxiv.org/
abs/1411.1784

Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks. In 2016 International Conference on
Learning Representations. http://arxiv.org/abs/1511.06434

Raunak Sinha, A. S., Naveen Panwar. (2018). IBM GAN Toolkit. In GitHub repository.
https://https://github.com/IBM/gan-toolkit; GitHub.

Shor, J. (2017). Tensorflow GAN. In GitHub repository. https://github.com/tensorflow/
models/tree/master/research/gan; GitHub.

Tulyakov, S., Liu, M.-Y., Yang, X., & Kautz, J. (2018). MoCoGAN: Decomposing Motion
and Content for Video Generation. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Zhang, Y., Gan, Z., Fan, K., Chen, Z., Henao, R., Shen, D., & Carin, L. (2017). Adversarial
feature matching for text generation. Proceedings of the 34th International Conference
on Machine Learning-Volume 70, 4006–4015.

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation
Using Cycle-Consistent Adversarial Networks. 2017 IEEE International Conference on
Computer Vision (ICCV). https://doi.org/10.1109/iccv.2017.244

Pal et al., (2021). TorchGAN: A Flexible Framework for GAN Training and Evaluation. Journal of Open Source Software, 6(66), 2606.
https://doi.org/10.21105/joss.02606

5

https://doi.org/10.1109/cvpr.2017.19
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1511.06434
https://https://github.com/IBM/gan-toolkit
https://github.com/tensorflow/models/tree/master/research/gan
https://github.com/tensorflow/models/tree/master/research/gan
https://doi.org/10.1109/iccv.2017.244
https://doi.org/10.21105/joss.02606

	Abstract
	Introduction
	Implementing Models in TorchGAN
	Existing Frameworks
	Performance
	Conclusion and Future Work
	References

