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Introduction

Persistent homology (Edelsbrunner & Harer, 2008) is a relatively recent computational tech-
nique that extracts topological information from various kinds of datasets. This topological
information gives us a good overview of the global shape of the data as well as giving us a
description of its local geometry. Since its introduction, it has been used in a diverse range of
applications, including biology (Bernoff & Topaz, 2016), material science (Lee et al., 2017),
signal processing (Tralie, 2016), and computer vision (Asaad & Jassim, 2017). A problem
persistent homology faces is the very large size of combinatorial structures it has to work
with. Recent algorithmic advances employ various computational shortcuts to overcome this
problem.
Among the most successful implementations of persistent homology is Ripser (Bauer, 2019).
With its speed and low memory usage, it makes persistent homology practical for larger
datasets, even in higher dimensions. The introduction of Ripser has spawned a whole cottage
industry of extensions and wrappers. Some examples include Ripser++ (Zhang, Xiao, &
Wang, 2020), Lock-free Ripser (Morozov & Nigmetov, 2020), Ripser.py (Tralie, Saul, & Bar-
On, 2018), Cubical Ripser (Kaji, Sudo, & Ahara, 2020), and Flagser (Lütgehetmann, Govc,
Smith, & Levi, 2020).
In the Julia (Bezanson, Edelman, Karpinski, & Shah, 2017) space, there are few persistent
homology packages available. The ones we were able to find include Eirene.jl1 (Henselman &
Ghrist, 2016), ComputationalHomology.jl2, Sparips.jl3 (Brehm & Hardering, 2018), and Per-
sistentCohomology.jl4, of which only Eirene.jl is available through the Julia package manager.

Statement of Need

A significant hurdle in developing new approaches to persistent homology stems from the fact
that developing an efficient implementation of its matrix reduction algorithm is nontrivial.
To solve this problem, we introduce Ripserer.jl, a pure Julia implementation of persistent
homology based on the algorithm that powers Ripser. It provides users with an intuitive
user interface and is readily useful as a topological data analysis framework. The other main
feature Ripserer.jl provides is the ability to hook into its algorithm through an API. This allows
researchers to experiment with different approaches to persistent homology without having to
reimplement the algorithm from scratch or forking an existing repository.

1https://github.com/Eetion/Eirene.jl
2https://github.com/wildart/ComputationalHomology.jl
3https://github.com/bbrehm/Sparips.jl
4https://github.com/piever/PersistentCohomology.jl
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Figure 1: Example visualizations. The plot on the left shows the three main representative cocycles
in the data. The right plot shows the persistence diagram.

Summary

Along with its companion package, PersistenceDiagrams.jl5, Ripserer.jl provides a featureful
environment for computing persistent homology and integrating it with the rest of Julia’s data
science stack. At the time of writing, it offers the following features.

• Fast Vietoris-Rips, alpha complex, and cubical persistent homology computation.
• Representative cocycle and critical simplex computation.
• Support for coefficients in any, possibly user-defined, field.
• Convenient persistence diagram and representative cocycle visualization via Plots.jl6

recipes.
• Bottleneck and Wasserstein matching and distance computation.
• Various persistence diagram vectorization functions, implemented with persistence im-

ages (Adams et al., 2017) and persistence curves (Chung & Lawson, 2019).
• Easy extensibility through a documented API.

Our benchmarks7 show that Ripserer’s performance is very close to that of Ripser. It tends to
be slightly slower for dense inputs and slightly faster for very sparse inputs. In the cubical case,
we compared it to Cubical Ripser. There the performance was worse, taking up to 3 times as
long to compute some results. This is expected as Cubical Ripser is much more specialized
for its use case and even splits its code into different repositories for different dimensions.
We have not compared performance with newer, parallel implementations such as Ripser++
or lock-free Ripser. Judging from the benchmarks they provide, we expect them to perform
much better. Their downside, however, is that they require powerful hardware, such as GPUs
or large numbers of processors.

5https://github.com/mtsch/PersistenceDiagrams.jl
6https://github.com/JuliaPlots/Plots.jl
7https://mtsch.github.io/Ripserer.jl/dev/benchmarks/
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