
Ripserer.jl: flexible and efficient persistent homology
computation in Julia
Matija Čufar1

1 Independent Researcher
DOI: 10.21105/joss.02614

Software
• Review
• Repository
• Archive

Editor: Viviane Pons
Reviewers:

• @juliohm
• @sauln

Submitted: 26 August 2020
Published: 19 October 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Introduction

Persistent homology (Edelsbrunner & Harer, 2008) is a relatively recent computational tech-
nique that extracts topological information from various kinds of datasets. This topological
information gives us a good overview of the global shape of the data as well as giving us a
description of its local geometry. Since its introduction, it has been used in a diverse range of
applications, including biology (Bernoff & Topaz, 2016), material science (Lee et al., 2017),
signal processing (Tralie, 2016), and computer vision (Asaad & Jassim, 2017). A problem
persistent homology faces is the very large size of combinatorial structures it has to work
with. Recent algorithmic advances employ various computational shortcuts to overcome this
problem.
Among the most successful implementations of persistent homology is Ripser (Bauer, 2019).
With its speed and low memory usage, it makes persistent homology practical for larger
datasets, even in higher dimensions. The introduction of Ripser has spawned a whole cottage
industry of extensions and wrappers. Some examples include Ripser++ (Zhang, Xiao, &
Wang, 2020), Lock-free Ripser (Morozov & Nigmetov, 2020), Ripser.py (Tralie, Saul, & Bar-
On, 2018), Cubical Ripser (Kaji, Sudo, & Ahara, 2020), and Flagser (Lütgehetmann, Govc,
Smith, & Levi, 2020).
In the Julia (Bezanson, Edelman, Karpinski, & Shah, 2017) space, there are few persistent
homology packages available. The ones we were able to find include Eirene.jl1 (Henselman &
Ghrist, 2016), ComputationalHomology.jl2, Sparips.jl3 (Brehm & Hardering, 2018), and Per-
sistentCohomology.jl4, of which only Eirene.jl is available through the Julia package manager.

Statement of Need

A significant hurdle in developing new approaches to persistent homology stems from the fact
that developing an efficient implementation of its matrix reduction algorithm is nontrivial.
To solve this problem, we introduce Ripserer.jl, a pure Julia implementation of persistent
homology based on the algorithm that powers Ripser. It provides users with an intuitive
user interface and is readily useful as a topological data analysis framework. The other main
feature Ripserer.jl provides is the ability to hook into its algorithm through an API. This allows
researchers to experiment with different approaches to persistent homology without having to
reimplement the algorithm from scratch or forking an existing repository.

1https://github.com/Eetion/Eirene.jl
2https://github.com/wildart/ComputationalHomology.jl
3https://github.com/bbrehm/Sparips.jl
4https://github.com/piever/PersistentCohomology.jl

Čufar, M., (2020). Ripserer.jl: flexible and efficient persistent homology computation in Julia. Journal of Open Source Software, 5(54), 2614.
https://doi.org/10.21105/joss.02614

1

https://doi.org/10.21105/joss.02614
https://github.com/openjournals/joss-reviews/issues/2614
https://github.com/mtsch/Ripserer.jl
https://doi.org/10.5281/zenodo.4081109
https://www.lri.fr/~pons/en/
https://github.com/juliohm
https://github.com/sauln
http://creativecommons.org/licenses/by/4.0/
https://github.com/Eetion/Eirene.jl
https://github.com/wildart/ComputationalHomology.jl
https://github.com/bbrehm/Sparips.jl
https://github.com/piever/PersistentCohomology.jl
https://doi.org/10.21105/joss.02614


Figure 1: Example visualizations. The plot on the left shows the three main representative cocycles
in the data. The right plot shows the persistence diagram.

Summary

Along with its companion package, PersistenceDiagrams.jl5, Ripserer.jl provides a featureful
environment for computing persistent homology and integrating it with the rest of Julia’s data
science stack. At the time of writing, it offers the following features.

• Fast Vietoris-Rips, alpha complex, and cubical persistent homology computation.
• Representative cocycle and critical simplex computation.
• Support for coefficients in any, possibly user-defined, field.
• Convenient persistence diagram and representative cocycle visualization via Plots.jl6

recipes.
• Bottleneck and Wasserstein matching and distance computation.
• Various persistence diagram vectorization functions, implemented with persistence im-

ages (Adams et al., 2017) and persistence curves (Chung & Lawson, 2019).
• Easy extensibility through a documented API.

Our benchmarks7 show that Ripserer’s performance is very close to that of Ripser. It tends to
be slightly slower for dense inputs and slightly faster for very sparse inputs. In the cubical case,
we compared it to Cubical Ripser. There the performance was worse, taking up to 3 times as
long to compute some results. This is expected as Cubical Ripser is much more specialized
for its use case and even splits its code into different repositories for different dimensions.
We have not compared performance with newer, parallel implementations such as Ripser++
or lock-free Ripser. Judging from the benchmarks they provide, we expect them to perform
much better. Their downside, however, is that they require powerful hardware, such as GPUs
or large numbers of processors.

5https://github.com/mtsch/PersistenceDiagrams.jl
6https://github.com/JuliaPlots/Plots.jl
7https://mtsch.github.io/Ripserer.jl/dev/benchmarks/

Čufar, M., (2020). Ripserer.jl: flexible and efficient persistent homology computation in Julia. Journal of Open Source Software, 5(54), 2614.
https://doi.org/10.21105/joss.02614

2

https://github.com/mtsch/PersistenceDiagrams.jl
https://github.com/JuliaPlots/Plots.jl
https://mtsch.github.io/Ripserer.jl/dev/benchmarks/
https://doi.org/10.21105/joss.02614


Acknowledgments

We would like to thank Žiga Virk for comments, suggestions and ideas, and Ulrich Bauer for
making the source code of Ripser freely available.

References

Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S.,
et al. (2017). Persistence images: A stable vector representation of persistent homology.
The Journal of Machine Learning Research, 18(1), 218–252. Retrieved from https://dl.
acm.org/doi/10.5555/3122009.3122017

Asaad, A., & Jassim, S. (2017). Topological data analysis for image tampering detection. In
International workshop on digital watermarking (pp. 136–146). Springer. doi:10.1007/
978-3-319-64185-0_11

Bauer, U. (2019). Ripser: Efficient computation of vietoris-rips persistence barcodes. arXiv
preprint arXiv:1908.02518. Retrieved from https://arxiv.org/abs/1908.02518

Bernoff, A. J., & Topaz, C. M. (2016). Biological aggregation driven by social and environ-
mental factors: A nonlocal model and its degenerate cahn–hilliard approximation. SIAM
Journal on Applied Dynamical Systems, 15(3), 1528–1562. doi:10.1137/15M1031151

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM review, 59(1), 65–98. doi:10.1137/141000671

Brehm, B., & Hardering, H. (2018). Sparips. arXiv preprint arXiv:1807.09982. Retrieved
from https://arxiv.org/abs/1807.09982

Chung, Y.-M., & Lawson, A. (2019). Persistence curves: A canonical framework for sum-
marizing persistence diagrams. arXiv preprint arXiv:1904.07768. Retrieved from https:
//arxiv.org/abs/1904.07768

Edelsbrunner, H., & Harer, J. (2008). Persistent homology-a survey. Contemporary mathe-
matics, 453, 257–282. doi:10.1090/conm/453/08802

Henselman, G., & Ghrist, R. (2016). Matroid filtrations and computational persistent homol-
ogy. arXiv preprint arXiv:1606.00199. Retrieved from https://arxiv.org/abs/1606.00199

Kaji, S., Sudo, T., & Ahara, K. (2020). Cubical ripser: Software for computing persistent
homology of image and volume data. arXiv preprint arXiv:2005.12692. Retrieved from
https://arxiv.org/pdf/2005.12692.pdf

Lee, Y., Barthel, S. D., Dłotko, P., Moosavi, S. M., Hess, K., & Smit, B. (2017). Quantifying
similarity of pore-geometry in nanoporous materials. Nature communications, 8, 15396.
doi:10.1038/ncomms15396

Lütgehetmann, D., Govc, D., Smith, J. P., & Levi, R. (2020). Computing persistent homology
of directed flag complexes. Algorithms, 13(1), 19. doi:10.3390/a13010019

Morozov, D., & Nigmetov, A. (2020). Towards lockfree persistent homology. In Proceedings
of the 32nd acm symposium on parallelism in algorithms and architectures (pp. 555–557).
doi:10.1145/3350755.3400244

Tralie, C. (2016). High-dimensional geometry of sliding window embeddings of periodic
videos. In 32nd international symposium on computational geometry (socg 2016). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.SoCG.2016.71

Tralie, C., Saul, N., & Bar-On, R. (2018). Ripser. Py: A lean persistent homology library for
python. Journal of Open Source Software, 3(29), 925. doi:10.21105/joss.00925

Čufar, M., (2020). Ripserer.jl: flexible and efficient persistent homology computation in Julia. Journal of Open Source Software, 5(54), 2614.
https://doi.org/10.21105/joss.02614

3

https://dl.acm.org/doi/10.5555/3122009.3122017
https://dl.acm.org/doi/10.5555/3122009.3122017
https://doi.org/10.1007/978-3-319-64185-0_11
https://doi.org/10.1007/978-3-319-64185-0_11
https://arxiv.org/abs/1908.02518
https://doi.org/10.1137/15M1031151
https://doi.org/10.1137/141000671
https://arxiv.org/abs/1807.09982
https://arxiv.org/abs/1904.07768
https://arxiv.org/abs/1904.07768
https://doi.org/10.1090/conm/453/08802
https://arxiv.org/abs/1606.00199
https://arxiv.org/pdf/2005.12692.pdf
https://doi.org/10.1038/ncomms15396
https://doi.org/10.3390/a13010019
https://doi.org/10.1145/3350755.3400244
https://doi.org/10.4230/LIPIcs.SoCG.2016.71
https://doi.org/10.21105/joss.00925
https://doi.org/10.21105/joss.02614


Zhang, S., Xiao, M., & Wang, H. (2020). GPU-accelerated computation of vietoris-rips
persistence barcodes. arXiv preprint arXiv:2003.07989. Retrieved from https://arxiv.org/
abs/2003.07989

Čufar, M., (2020). Ripserer.jl: flexible and efficient persistent homology computation in Julia. Journal of Open Source Software, 5(54), 2614.
https://doi.org/10.21105/joss.02614

4

https://arxiv.org/abs/2003.07989
https://arxiv.org/abs/2003.07989
https://doi.org/10.21105/joss.02614

	Introduction
	Statement of Need
	Summary
	Acknowledgments
	References

