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Summary

In order to study long-term degradation and charge storage mechanisms in batteries, re-
searchers often cycle these electrochemical cells for hundreds or even thousands of charge and
discharge cycles. The raw data produced during cycling can be interpreted via a variety of
techniques that each highlight specific aspects of how the battery is functioning. Differential
capacity (dQ/dV) analysis, one such technique, results in plots of the differential capacity
– the charge introduced into the battery during a small change in voltage – vs. the volt-
age. Electrochemical reactions result in significant charge introduced into the cell across a
small voltage window. In the differential capacity plot, this behavior results in a peak for
each electrochemical reaction. Therefore, differential capacity plots are particularly useful for
highlighting the various electrochemical events occurring within the cell, specific to each cycle
(Aihara et al., 2016; Christophersen et al., 2006; Christophersen & Shaw, 2010; Marzocca
& Atwater, n.d.; Torai, Nakagomi, Yoshitake, Yamaguchi, & Oyama, 2016; Weng, Cui, Sun,
& Peng, 2013). In turn, these peaks carry important characteristics of the electrochemical
reaction. For example, the location of the peak indicates at what voltage the reaction occurs,
and the area of the peak is linked to the amount of charge exchanged in the reaction.
We present DiffCapAnalyzer, a Python package for extracting and tracking differential capacity
curve features through multiple charge and discharge cycles. DiffCapAnalyzer provides cleaned
dQ/dV curves, peak locations, peak heights, peak areas, and other characteristics specific to
each cycle from raw battery cycling data.

Statement of Need

Traditionally, when using differential capacity plots, researchers have drawn conclusions based
on an arbitrarily chosen subset of cycles and reported mainly qualitative claims on how peaks
shift during cycling, due to the difficulties in analyzing the full amount of data produced
in the differential capacity plots. Additionally, although it is known that peak shapes and
areas correlate to important electrochemical events, only a few papers report using peak
deconvolution as a method to interpret dQ/dV plots (Aihara et al., 2016; Bian, Liu, & Yan,
2019; He, Bian, Liu, Wei, & Yan, 2020; Huang, 2019; Torai et al., 2016). Further, there
does not exist any standardized method for peak deconvolution of differential capacity plots.
These issues can largely be attributed to the lack of software designed for investigating sets
of dQ/dV curves. Prior to DiffCapAnalyzer, no open source software has been available to
researchers for the analysis of differential capacity curves through peak deconvolution.
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Description

The software described herein, DiffCapAnalyzer, has been developed to address the drawbacks
associated with differential capacity analysis by processing cycling data in a chemistry-agnostic
manner. This is done by calculating differential capacity from the given raw cycling data using
Equation 1, cleaning and smoothing the dQ/dV plots, and performing automatic peak locating
and deconvolution for every cycle within the dataset.

(dQ/dV )i = (Qi −Q(i−1))/(Vi − V(i−1)) (1)

In differential capacity curves without any cleaning or smoothing, there is significant noise and
large step-wise changes present. This is a common problem when the denominator of Equation
1 approaches zero (Bloom et al., 2005; Huang, 2019). Therefore, in order to accurately
identify peaks, the data is cleaned by removing points such that the voltage difference between
datapoints is at least 0.001 V. Subsequently, the curve is smoothed using a Savitzky-Golay
filter, which is a moving polynomial of specified order fit over a specified number of data
points. At the current state of the software, the polynomial order of the Savitzky-Golay filter
is set at 3 with a window length of 9 data points, as these seemed the best parameters on
the data tested to preserve important features while removing noise. This cleaning process is
summarized in Figure 1:

Figure 1: Cleaning process on an example differential capacity curve.

Once the data is clean, the software automatically finds peaks in the dQ/dV curves utilizing
the PeakUtils Python package (“PeakUtils,” n.d.), and returns the peak heights and the peak
locations, as shown by an example cycle in Figure 2a. These peak heights and locations are
then used to inform the model build, which is individualized to each cycle contained in the
dataset. The model consists of Pseudo-Voigt distributions positioned at the identified peak
locations and a baseline Gaussian distribution that captures the area that is not part of the
Pseudo-Voigt distributions. The Pseudo-Voigt distribution described by Equations 2 and 3 is
simply the linear combination of a Gaussian and a Lorentzian. This distribution is often used
in fitting experimental spectral data due to it being a highly generalizable function able to fit
a large variety of peak shapes (Wertheim, Butler, West, & Buchanan, 1974).
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Once the model is generated, an optimized fit is found by allowing all parameters to vary
except the center position of the Pseudo-Voigt peaks, which are assigned via the previously
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identified peak locations. Figure 2b presents an example of an initial model fit and the model
fit once optimized specifically for that charge cycle.

Figure 2: Fitting process on an example differential capacity curve.

Further example model fits can be found on GitHub. From this model, peak areas, widths,
and shapes can be extracted and examined to give further insight into the electrochemical
processes occurring. The software also utilizes an SQLite database backend to store raw
data, cleaned data, model parameters, and peak descriptors for each cycle. In addition to the
data processing abilities of the software, a Dash-based web application has been developed
where users can upload their own raw data to be processed and visualize the resulting dQ/dV
plots and peak descriptors. Users can also evaluate the model fit, alter the threshold for
peak detection, and update the model and descriptors in the database. From this application
users can also download the cycle descriptors data as a CSV file for their own uses. Further
instructions and descriptions of the software functionality can be found in the DiffCapAnalyzer
Github repo.
In summary, DiffCapAnalyzer provides the ability to quantitatively analyze battery cycling data.
The peak descriptors obtained from DiffCapAnalyzer could be used to classify electrochemical
events, visualize battery degradation over time, or as features in state of health analyses. This
package also lays the groundwork for a standardized method for cleaning and analyzing this
type of data. We hope that this Python package advances the field of electrochemistry and
enables researchers to better analyze, interpret, and present their battery cycling data.
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