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Summary

GENRE (GPU Elastic-Net REgression) is a package that allows for many instances of linear
regression with elastic-net regularization to be processed in parallel on a GPU by using the
C programming language and NVIDIA’s (NVIDIA Corporation, Santa Clara, CA, USA) Com-
pute Unified Device Architecture (CUDA) parallel programming framework. Linear regression
with elastic-net regularization (Zou & Hastie, 2005) is a widely utilized tool when performing
model-based analyses. The basis of this method is that it allows for a combination of L1-
regularization and L2-regularization to be applied to a given regression problem. Therefore,
feature selection and coefficient shrinkage are performed while still allowing for the presence of
groups of correlated features. The process of performing these model fits can be computation-
ally expensive, and one of the fastest packages that is currently available is glmnet (Friedman,
Hastie, & Tibshirani, 2010; Hastie & Qian, 2014; Qian, Hastie, Tibshirani, & Simon, 2013).
This package provides highly efficient Fortran implementations of several different types of
regression. In the case of its implementation of linear regression with elastic-net regularization,
the objective function shown in (eq. 1) is minimized.
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To minimize this objective function, cyclic coordinate descent is utilized as the optimization
algorithm. This algorithm consists of minimizing the objective function with respect to one
model coefficient at a time. Cycling through all of the coefficients results in one iteration, and
this process continues until specified convergence criteria are satisfied. As previously stated,
glmnet is highly efficient for single model fits, but performing thousands of these fits will
still require significant computational time due to each one being executed in a serial fashion
on a CPU. However, by using GENRE to perform massively parallel processing on a GPU, a
significant speedup can potentially be achieved. This is due to the fact that modern GPUs
consist of thousands of computational cores that can be utilized. Moreover, although the
processing in GENRE is performed using the C programming language and CUDA, a MEX-
interface is included to allow for this code to be called within the MATLAB (The MathWorks,
Inc., Natick, MA, USA) programming language for convenience. This also means that with
modification, the MEX-interface can be replaced with another interface if it is desired to call
the C/CUDA code in another language, or the C/CUDA code can be utilized without an
interface. Note that other packages have been developed that can utilize GPUs for linear
regression with elastic-net regularization, such as H2O4GPU (“H2O4GPU,” 2020). However,
for this application, these packages typically focus on performing parallel computations on the
GPU for one model fit at a time in order to achieve acceleration when compared to a serial
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CPU implementation. For GENRE, the computations for a single model fit are not parallelized
on the GPU. Instead, many model fits on the GPU are executed in parallel, where each model
fit is performed by one computational thread.

Statement of Need

The core motivation for developing GENRE was that many of the available packages for per-
forming linear regression with elastic-net regularization focus on achieving high performance
in terms of computational time or resource consumption for single model fits. However, they
often do not address the case in which there is a need to perform many model fits in parallel.
For example, the research project that laid the foundation for GENRE involved performing
ultrasound image reconstruction using an algorithm called Aperture Domain Model Image RE-
construction (ADMIRE) (Byram, Dei, Tierney, & Dumont, 2015; Byram & Jakovljevic, 2014;
Dei & Byram, 2017). This algorithm is computationally expensive due to the fact that in one
stage, it requires thousands of instances of linear regression with elastic-net regularization to
be performed in order to fit models of ultrasound data. When this algorithm was implemented
on a CPU, it typically required an amount of time that was on the scale of minutes to recon-
struct one ultrasound image. The primary bottleneck was performing all of the required model
fits due to the fact that a custom C implementation of cyclic coordinate descent was used to
compute each fit serially. However, a GPU implementation of the algorithm was developed,
and this implementation provided a speedup of over two orders of magnitude, which allowed
for multiple ultrasound images to be reconstructed per second. For example, on a computer
containing dual Intel (Intel Corporation, Santa Clara, CA) Xeon Silver 4114 CPUs @ 2.20 GHz
with 10 cores each along with an NVIDIA GeForce GTX 1080 Ti GPU and an NVIDIA GeForce
RTX 2080 Ti GPU, the CPU implementation of ADMIRE had an average processing time of
94.326 ± 0.437 seconds for one frame of ultrasound channel data while the GPU implementa-
tion had an average processing time of 0.436 ± 0.001 seconds. The average processing time
was obtained for each case by taking the average of 10 runs for the same dataset, and timing
was performed using MATLAB’s built-in timing capabilities. The 2080 Ti GPU was used to
perform GPU processing, and the number of processing threads was set to 1 for the CPU
implementation. The main contributor to this speedup was the fact that the model fits were
performed in parallel on the GPU. For this particular case, 152,832 model fits were performed.
Note that double precision was used for the CPU implementation while single precision was
utilized for the GPU implementation due to the fact there is typically a performance penalty
when using double precision on a GPU. Moreover, for the CPU implementation, MATLAB was
used, and a MEX-file was used to call the C implementation of cyclic coordinate descent for
the model fitting stage. In addition, note that one additional optimization when performing
the model fits on the GPU in the case of ADMIRE is that groups of model fits can use the
same model matrix, which allows for improved coalesced memory access and GPU memory
bandwidth use. This particular optimization is not used by GENRE.
Aside from this application, there are a number of other applications that can potentially
benefit from having the ability to perform model fits in a massively parallel fashion, which is
why the code was developed into a package. For example, linear regression with elastic-net
regularization has been applied to the field of genomics in order to develop predictive models
that utilize genetic markers (Ogutu, Schulz-Streeck, & Piepho, 2012; Waldmann, Mészáros,
Gredler, Fuerst, & Sölkner, 2013). In addition, like ADMIRE, there are a variety of other
signal processing applications. For example, this regression method has been used to create
models of functional magnetic resonance imaging data in order to predict the mental states
of subjects and provide insight into neural activity (Carroll, Cecchi, Rish, Garg, & Rao, 2009).
Moreover, another signal processing example is that linear regression models with elastic-net
regularization have been used in combination with hidden Markov random field segmentation
to perform computed tomography estimation for the purposes of magnetic resonance imaging-
based attenuation correction for positron emission tomography/magnetic resonance imaging
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(Chen et al., 2014). Now, through the use of GENRE, it is possible to reduce the amount
of processing time that is required in each of the aforementioned examples by computing the
models in parallel for each case.
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