
DrWatson: the perfect sidekick for your scientific
inquiries
George Datseris4, Jonas Isensee1, Sebastian Pech5, and Tamás Gál2, 3

1 Max Planck Institute for Dynamics and Self Organization 2 Erlangen Centre for Astroparticle
Physics 3 Friedrich-Alexander-Universität Erlangen-Nürnberg 4 Max Planck Institute for
Meteorology 5 Institute for Mechanics of Materials and Structures, TU Wien

DOI: 10.21105/joss.02673

Software
• Review
• Repository
• Archive

Editor: David P. Sanders
Reviewers:

• @jpfairbanks
• @kescobo
• @apdavison

Submitted: 06 July 2020
Published: 29 October 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Doing scientific work always involves a lot of focus and scrutiny, since producing a scientific
result requires several levels of depth of analysis, all of which must be as accurate and as
reproducible as possible. All this required scrutiny should be naturally translated into the
codebase of the scientific project. One should strive for a code that is doing what it is supposed
to, is reproducible, doesn’t break over time, is sufficiently clear of bugs, and with simulation
results that are appropriately labelled, and more. The challenges associated with carrying out
scientific work should not be made any worse by the difficulties of managing the codebase and
resulting data/simulations. An unfortunate but likely outcome of this stress is that scientific
codebases tend to be sloppy: folders are not organized, there is no version control, data are
not provenanced properly, most scripts break over time, and the whole project is very hard, if
not impossible, to reproduce. We have created the software DrWatson to make the process
of scientific project management easier. In this paper we will describe how DrWatson results
in an efficient scientific workflow, taking time away from project management and giving it to
doing science.

Statement of need

DrWatson is a scientific project assistance software. Its purpose is to help scientists manage
their scientific codebase in a simple and clear manner, to make the process of creating the
codebase faster and to enable true full reproducibility and project sharing. DrWatson achieves
this while being entirely non-invasive throughout the process. It provides a well-tested science-
driven framework for managing a scientific project, thus removing the unnecessary stress and
giving more time to doing actual science.
Technically DrWatson is a package for the Julia language. It is likely that Julia is the only
language that can allow DrWatson to be the powerful framework that will be presented here,
because Julia combines multiple dispatch, an integrated package manager, macros and code
introspection. That said, however, we believe that a large part of the design of DrWatson can
be applied to other languages as well.
In this paper we provide a summary of what DrWatson can do (detailed documentation that
is regularly updated is hosted on GitHub). We will then highlight some examples of how
using DrWatson speeds up the scientific workflow in real-world scenarios. We close with a
comparison with existing software.

Datseris et al., (2020). DrWatson: the perfect sidekick for your scientific inquiries. Journal of Open Source Software, 5(54), 2673. https:
//doi.org/10.21105/joss.02673

1

https://doi.org/10.21105/joss.02673
https://github.com/openjournals/joss-reviews/issues/2673
https://github.com/JuliaDynamics/DrWatson.jl
https://doi.org/10.5281/zenodo.4133570
http://sistemas.fciencias.unam.mx/~dsanders
https://github.com/jpfairbanks
https://github.com/kescobo
https://github.com/apdavison
http://creativecommons.org/licenses/by/4.0/
https://juliadynamics.github.io/DrWatson.jl/stable/
https://doi.org/10.21105/joss.02673
https://doi.org/10.21105/joss.02673


Features and Functionality

DrWatson has an opt-in design. This means that DrWatson’s features can be grouped into
the following few main categories, which remain independent of each other (and thus you
“opt-in” which to use).

• Project setup & navigation: A universal project structure and functions that allow
you to consistently and robustly navigate through your project, no matter where it is
located.

• Naming schemes: A robust and deterministic scheme for naming and handling your
data structures.

• Saving tools: Tools for safely saving and loading your data, automatically tagging the
Git commit ID to your saved files, and more.

• Running & listing simulations: Tools for producing tables of existing simula-
tions/results, adding new simulation results to the tables, preparing batch parameter
containers, and more.

The next section illustrates these categories. For a more thorough explanation, the reader is
referred to DrWatson’s main documentation.
Please note that DrWatson is not a data management system and provides only basic data
management functionality that remains self-contained in a single scientific project. One of
our main future goals is to integrate DrWatson with a Relational Data Management System,
specifically CaosDB (Fitschen et al., 2019), which has been developed specifically to handle
large data bases connecting several scientific projects.

Typical workflow with DrWatson

In this section we demonstrate how using DrWatson makes the typical scientific workflow
faster, more robust, and easily reproducible. This section is a brief summary of the DrWatson
Workflow Tutorial, which in itself showcases a subset of DrWatson’s functionality. There the
workflow is discussed and demonstrated more thoroughly via explicitly running every code
command.
Typically, one starts a scientific project with the function initialize_project. This creates
a project folder that contains sensible default structure (e.g. folders for data, papers, scripts,
etc.), while also making the project a Julia project. This allows the scientific project to be
tied with the full hierarchy of exact package versions used, which remains entirely independent
from the main Julia installation (or any other project). The project is also a git repository,
which allows code versioning and reproducibility, and DrWatson provides functions that make
this process seamless (see below).
Within the context of DrWatson, all project-related code runs after the corresponding Julia
project has been activated. Several DrWatson functions like projectdir, datadir, plotsdir
and similar are then made available. When these functions are called they always return
the absolute path to the directory (or the appropriate subdirectories) in the active project,
independently of the current working directory or the script directory these functions are called
from. This establishes a relative-only path relationship within the project, which allows it to
naturally run on other machines when shared or synced via e.g. a cloud service. Adding
the command @quickactivate "ProjectName" to the start of every script automatically
activates the appropriate project and thus enables all DrWatson features with minimal effort.
Once the project structure and navigation has been established, there are several functions
that help the scientific workflow. For example, the function dict_list provides a convenient

Datseris et al., (2020). DrWatson: the perfect sidekick for your scientific inquiries. Journal of Open Source Software, 5(54), 2673. https:
//doi.org/10.21105/joss.02673

2

https://juliadynamics.github.io/DrWatson.jl/dev/workflow/
https://juliadynamics.github.io/DrWatson.jl/dev/workflow/
https://doi.org/10.21105/joss.02673
https://doi.org/10.21105/joss.02673


and consistent way of defining containers of parameter values. savename can be used for
preparing a file name or a figure title. Using it would transform the following dictionary

parameters = Dict(:phi => 3, :pos_z => 0.5, :date => Date(2020,5,23))

into

savename(parameters, "jld2")

with output:

"date=2020-05-23_pos_z=0.5_phi=3.jld2"

Once a simulation script is created, taking advantage of e.g. projectdir, dict_list, sa
vename among other functions, the user will typically want to save numeric results on disk.
DrWatson offers many functions that help the workflow at this level. safesave ensures that
saved data will never overwrite existing files, but make a new version instead (and back up
the original file). tagsave allows one to add git-related information to saved data. tagsave
is a function that excellently highlights how DrWatson is a minimally invasive framework.
Continuing from the dictionary parameters defined above, we would save any kind of data
wrapped in a dictionary with the command save(savename(parameters, "jld2"), data)
(ending .jld2 is used as an example). By only replacing the function save with @tagsave,
it is possible to attach important information to the saved data

@tagsave(savename(parameters, "jld2"), Dict("data" => [1,2,3]));

load(savename(parameters, "jld2")) # load back saved data

yielding the output:

Dict{Symbol,Any} with 6 entries:
:gitcommit => "v1.13.0-1-g3a5364f"
:script => "docs/build/string#3"
:data => [1, 2, 3]
:gitpatch => ""

The fields :gitcommit, :script, :gitpatch were added automatically and provide the
necessary information for reproducibility. In case of uncommitted modifications (also called
a “dirty git repository”), a patch is saved under the :gitpatch key which can be applied
to the :gitcommit to restore the exact state of the repository. Calling @tagsave without
extra arguments assumes that you use DrWatson’s suggested folder structure using initia
lize_project, and thus that it can find all git-related information automatically. However
this is not necessary: you can instead provide a keyword argument gitpath to @tagsave and
explictly specify a git path. Finally, the parse_savename(filename; kwargs...) function
can be used to obtain the parameters dictionary from the filename.
A last step is data aggregation. The function collect_results can traverse the data folder
and collect all saved files into a DataFrame (the major Julia tabular datastructure) for further
analysis. The function is adaptive in that it expands the table as needed when adding new
simulations with potentially different parameters.
Sharing and reproducing a DrWatson project is in every respect trivial. The entire project
folder is simply sent to a different machine, and in a Julia session the user does the following:

Datseris et al., (2020). DrWatson: the perfect sidekick for your scientific inquiries. Journal of Open Source Software, 5(54), 2673. https:
//doi.org/10.21105/joss.02673

3

https://doi.org/10.21105/joss.02673
https://doi.org/10.21105/joss.02673


using Pkg
Pkg.activate("path/to/project")
Pkg.instantiate()

and all necessary dependencies are installed automatically. Since the project uses only relative
paths because of the function projectdir, every script runs as it did on the original machine.
If all saved data are tagged with a git-commit, one can potentially re-create previous results
by simply checking out the appropriate commit. Finally, since all package versions used are
“baked” into the project, a DrWatson project does not break over time even if the main Julia
installation is regularly updated.
One thing that we hope to have highlighted in this section is how DrWatson’s functionality
is not only minimally invasive, but is also achieved with minimal effort. All functionality is
contained within the Julia programming language and within the script files naturally belonging
to the project: no command-line usage or special commands are necessary, and neither is the
preparation of additional configuration files outside of the scripts. DrWatson’s functionality
comes directly from using the functions and macros exported by the package. While this is
a great advantage in many use cases, it does come with a natural limitation: When running
and interacting with code from different languages, the relevant file-IO logic needs to happen
in Julia to leverage the full power of DrWatson.

Comparison with existing software

There are numerous tools, software packages and language extensions that provide functions
to improve the scientific workflow and allow full reproducibility. They contain features like
version control, templates for folder structures, management of external code dependencies
and data provenance. Although the tools we investigated perform well in their respective
domains and in some parts, such as data provenance, even outperform DrWatson, none of
them supports the wide range of functions required for a scientific project, while being non-
invasive and easy to use. Therefore, several tools must be combined to provide a similar set
of functions as those provided by DrWatson.
One main aspect, and the entry point to every scientific project, is a consistent folder structure.
While DrWatson comes with a predefined structure, packages like rrtools (Sills, 2004),
prodigenr (Johnston, n.d.) and starters (Locke, n.d.) for R or Cookiecutter (Roy, n.d.)
(with a template for scientific projects like Cookiecutter-data-science (Inc., n.d.)) for
Python, allow having a user-defined one. Like DrWatson, most of the tools that initialize a
folder structure also initialize a Git repository for version control. In order to gain advantage
from having code in version control, e.g. extracting diffs or commit ids, additional software
packages, focused on data provenance, are needed.
Applications like sumatra (Davison, Mattioni, Samarkanov, & Teleńczuk, 2014), which is
written in Python and also supports MATLAB, R, and BASH, while also providing extensibility
for other languages, work mainly by executing scripts through a separate standalone tool
that captures and tags all files created at runtime. Another example of such an external
manager is ReproZip (Chirigati, Rampin, Shasha, & Freire, 2016), which traces system calls
to identify which files are part of a specific analysis and generates additional metadata to
combine everything together into zip-file in a reproducible manner. ActivePapers (Hinsen,
2011) falls into the same category and provides a concept and guidelines for reproducible
science. There are reference implementations of the ActivePapers concept for Python, JVM
(Java Virtual Machine) and Pharo, see (ActivePapers, n.d.). Specialised alternatives like
recordr (Peter Slaughter, n.d.) for R, explore for Matlab or recipy (Jackson et al., 2018)
for Python aim at the non-invasive approach by redefining IO functions for logging metadata
during saving.

Datseris et al., (2020). DrWatson: the perfect sidekick for your scientific inquiries. Journal of Open Source Software, 5(54), 2673. https:
//doi.org/10.21105/joss.02673

4

https://doi.org/10.21105/joss.02673
https://doi.org/10.21105/joss.02673


The outlined tools, however, come with a cost of being limited to certain supported IO
functions or the need of additional software to run code or a server infrastructure. Moreover,
most of them are tied to a specific programming language and data provenance is only provided
in their own context and usually within a single process. Scientific projects, however, often
deal with heterogeneous computing environments and pipelines running a multitude of scripts
and applications connected to each other, thus the orchestration and data provenance needs
to be implemented in a more language-agnostic way. An example for such a framework (with
significantly different end-goals compared to DrWatson) is the Common Workflow Language
(Amstutz et al., 2016). Notice that in principle DrWatson is tied to Julia, a single programming
language. But because Julia has strong interop capabilities, allowing native C/FORTRAN
calls and calls to Python or R (for example) via PyCall and RCall, the Julia-based design of
DrWatson is much less of a limiting factor than for other languages. In addition, DrWatson
is suitable for both making repetitive workflows reproducible (which CWL targets) but also
exploratory scientific work.
Therefore, DrWatson only implements basic data provenance features like logging version
control information in Julia dictionaries and storing parameter configurations in paths using
the savename function, which in many cases already covers the basic requirements. The latter
approach allows for a simple, universal, file-format-independent method for keeping simulation
parameters together with result files.
In terms of portability of scientific projects, management of external code dependencies and
packages is crucial. Most of the mentioned languages come with a package manager enabling
such functionality. renv (Ushey, n.d.) for R implements a feature similar to projects that
can be created with Pkg.jl, that DrWatson uses. Dependency management is also possible
in Python, e.g. by using virtual environments, which are included in the standard library of
Python since version 3.5.

Conclusion

In summary, DrWatson combines several functionalities, all communicating excellently with
each other and almost all being entirely opt-in, while it goes well beyond only aiding data
provenance or simply providing a default folder structure. This results in an efficient scientific
workflow, taking time off of project management and giving it to doing science.

References

ActivePapers. (n.d.). Retrieved from http://www.activepapers.org/
Amstutz, P., Crusoe, M. R., Tijanić, N., Chapman, B., Chilton, J., Heuer, M., Kartashov, A.,

et al. (2016). Common Workflow Language, v1.0. doi:10.6084/m9.figshare.3115156.v2
Chirigati, F., Rampin, R., Shasha, D., & Freire, J. (2016). ReproZip: Computational re-

producibility with ease. In Proceedings of the 2016 international conference on manage-
ment of data, SIGMOD ’16 (pp. 2085–2088). San Francisco, California, USA: ACM.
doi:10.1145/2882903.2899401

Davison, A., Mattioni, M., Samarkanov, D., & Teleńczuk, B. (2014). Sumatra: A toolkit for
reproducible research. In Implementing Reproducible Research (pp. 57–79). doi:10.1201/
9781315373461-3

Fitschen, T., Schlemmer, A., Hornung, D., Wörden, H. tom, Parlitz, U., & Luther, S. (2019).
CaosDBResearch data management for complex, changing, and automated research work-
flows. Data, 4(2), 83. doi:10.3390/data4020083

Datseris et al., (2020). DrWatson: the perfect sidekick for your scientific inquiries. Journal of Open Source Software, 5(54), 2673. https:
//doi.org/10.21105/joss.02673

5

http://www.activepapers.org/
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1201/9781315373461-3
https://doi.org/10.1201/9781315373461-3
https://doi.org/10.3390/data4020083
https://doi.org/10.21105/joss.02673
https://doi.org/10.21105/joss.02673


Hinsen, K. (2011). A data and code model for reproducible research and executable papers.
Procedia Computer Science, 4, 579–588. doi:10.1016/j.procs.2011.04.061

Inc., D. (n.d.). Cookiecutter data science. Retrieved from https://drivendata.github.io/
cookiecutter-data-science/#cookiecutter-data-science

Jackson, M., Wilson, R., Zwaan, J. van der, Steinbrook, D. W., Rathgeber, F., Alegre, R.,
Edwards, T., et al. (2018, October). Recipy. Retrieved from https://github.com/recipy/
recipy

Johnston, L. W. (n.d.). Prodigenr-a component of reproducible and open scientific projects.
Retrieved from https://github.com/lwjohnst86/prodigenr

Locke, S. (n.d.). Starters. Retrieved from https://github.com/lockedata/starters
Peter Slaughter, C. J., Matthew B. Jones. (n.d.). Recordr. doi:10.5063/F1GF0RF6
Roy, A. (n.d.). Cookiecutter. Retrieved from https://cookiecutter.readthedocs.io/en/1.7.2/
Sills, A. V. (2004). RRtools—a maple package for aiding the discovery and proof of finite

rogers–ramanujan type identities. Journal of Symbolic Computation, 37(4), 415–448.
doi:10.1016/j.jsc.2003.04.002

Ushey, K. (n.d.). Introduction to renv. Retrieved from https://rstudio.github.io/renv/articles/
renv.html

Datseris et al., (2020). DrWatson: the perfect sidekick for your scientific inquiries. Journal of Open Source Software, 5(54), 2673. https:
//doi.org/10.21105/joss.02673

6

https://doi.org/10.1016/j.procs.2011.04.061
https://drivendata.github.io/cookiecutter-data-science/#cookiecutter-data-science
https://drivendata.github.io/cookiecutter-data-science/#cookiecutter-data-science
https://github.com/recipy/recipy
https://github.com/recipy/recipy
https://github.com/lwjohnst86/prodigenr
https://github.com/lockedata/starters
https://doi.org/10.5063/F1GF0RF6
https://cookiecutter.readthedocs.io/en/1.7.2/
https://doi.org/10.1016/j.jsc.2003.04.002
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html
https://doi.org/10.21105/joss.02673
https://doi.org/10.21105/joss.02673

	Summary
	Statement of need
	Features and Functionality
	Typical workflow with DrWatson
	Comparison with existing software
	Conclusion
	References

