
Hardware-Control: Instrument control and automation
package
Grant Giesbrecht1, Ariel Amsellem1, Timo Bauer1,2, Brian Mak1, Brian
Wynne1, Zhihao Qin1, and Arun Persaud1

1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 2 Technische Universität
Darmstadt, 64289 Darmstadt, Hesse, Germany

DOI: 10.21105/joss.02688

Software
• Review
• Repository
• Archive

Editor: Tim Tröndle
Reviewers:

• @aquilesC
• @untzag
• @garrettj403

Submitted: 10 September 2020
Published: 20 April 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
Conducting experimental research often relies on the control of laboratory instruments to, for
example, control power supplies, move stages, and measure data. Tasks, such as data logging
or parameter scans, often need to be automated. Being able to easily create a user interface
to the hardware and to be able to reuse code is highly desirable.

Hardware-Control is a Python package for instrument control and automation. It provides
reusable user interfaces and instrument drivers to simplify writing control programs. Hardware

-Control uses PyQt5, a GUI framework (Riverbank Computing Limited, 2020), to create fast
and efficient user interfaces compatible with most major operating systems. Hardware-Control

is also designed so that new drivers can be easily added for new hardware and used with
existing user interfaces. The package also provides means for simplifying data collection with
automatic data logging, plotting, and several export formats. Hardware-Control was designed
with the use case of experiments in our laboratory in mind. Normally, this involves reading
and setting voltages, controlling power supplies and oscilloscopes, updating values on external
triggers, and automatically updating these values on a timer with time scales of about a second.
The program is currently not well-fitted to do any real-time or near real-time communications
with instruments or to handle data that is, for example, being streamed from a camera. The
program interacts best with message-based devices or devices that already have Python’s
modules available to control them. The program’s instrument drivers can send messages to
sockets, usb ports, serial ports, etc. or call a Python function to read or write a setting or
call a command on the interface. Most of the drivers rely on the excellent PyVISA (PyVISA
Authors, 2021) library, but drivers can also utilize PyModbus (Pymodbus Authors, 2021), or
the built-in socket library.

For handling the data, we rely on NumPy (Harris et al., 2020), pandas (The pandas development
team, 2021), and many other common libraries that are available on PyPI to do data analysis.

For communications within the library we rely on ZMQ (ZMQ Authors, 2021).

Statement of need
Commercial systems, such as LabVIEW, already exist, and they often do provide a wide range
of instrument drivers (either directly or from the manufacturer of the devices). However, we
have found that the resulting code is often hard to version control (LabVIEW files are binary,
so code reviews and pull requests on services such as Bitbucket and GitHub are therefore
difficult). Furthermore, although backend code can be shared between projects, complex user
interfaces cannot easily be reused. The software package presented here tries to address these
issues. Specifically, it makes reusing frontend code easier, integrates well with git, and provides

Giesbrecht et al. (2022). Hardware-Control: Instrument control and automation package. Journal of Open Source Software, 7(72), 2688.
https://doi.org/10.21105/joss.02688.

1

https://doi.org/10.21105/joss.02688
https://github.com/openjournals/joss-reviews/issues/2688
https://bitbucket.org/berkeleylab/hardware-control/src/main/
https://doi.org/10.5281/zenodo.6459291
https://github.com/timtroendle
https://github.com/aquilesC
https://github.com/untzag
https://github.com/garrettj403
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02688


an easy built-in scripting solution (via an optional Python REPL that has full access to the
GUI and all backends). The control through Python during execution makes one-off complex
parameter scans easy to implement. The software also makes it easy to develop and test the
code without any hardware connected to the system by running a program in ‘dummy mode’ in
which the hardware does not need to be present. When in dummy mode, the user can specify
return values for certain opperations in order to test the program.

Similar packages already exist (see Scopefoundry.org (Barnard et al., 2020), PyMeasure
(Jermain & al., 2021), yaq (Yaq authors, 2021), etc.). A good overview of available Python
packages can be found in Buchner (2022). However, for our experiments we had a specific use
case in mind, and we therefore decided to implement the provided solution. This software is
currently actively used in our group at Lawrence Berkeley National Laboratory. Although our
group is using Hardware-Control specifically in beam physics applications, we believe that
the code can be useful for other experiments too.

In principle, we plan to continue to develop the code in the future by adding more instrument
drivers and custom widgets since we believe that the current solution provides us several
benefits compared to prior solutions and we have working setups at our test stands. Therefore,
we are also open to community contributions. However, we are also open to merge our code
into one of the pre-existing code bases and plan to explore these options going forward.

Acknowledgements
The information, data, or work presented herein was funded by the Advanced Research
Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Contract No. DE-AC02-
05CH11231.

References
Barnard, E. S., Buckley, A., Borys, N., Ogletree, F., Ursprung, B., Aiello, C., & Wu, H. (2020).

A python platform for controlling custom laboratory experiments and visualizing scientific
data. http://www.scopefoundry.org/.

Buchner, C. (2022). Python lab automation landscape catalog (Version v0.9). Zenodo.
https://doi.org/10.5281/zenodo.6399528

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Jermain, C., & al., G. R. et. (2021). PyMeasure scientific package. https://pymeasure.
readthedocs.io/en/latest/index.html.

Pymodbus Authors. (2021). Pymodbus documentation. https://pymodbus.readthedocs.io/
en/latest/index.html

PyVISA Authors. (2021). PyVISA documentation. https://pyvisa.readthedocs.io/en/stable/

Riverbank Computing Limited. (2020). Python bindings for the qt cross platform application
toolkit. https://pypi.org/project/PyQt5/.

The pandas development team. (2021). Pandas-dev/pandas: pandas (latest) [Computer
software]. Zenodo. https://doi.org/10.5281/zenodo.5574486

Yaq authors. (2021). A modular and extensible instrument control framework. https://yaq.fyi.

ZMQ Authors. (2021). ZMQ documentation. https://zeromq.org/

Giesbrecht et al. (2022). Hardware-Control: Instrument control and automation package. Journal of Open Source Software, 7(72), 2688.
https://doi.org/10.21105/joss.02688.

2

http://www.scopefoundry.org/
https://doi.org/10.5281/zenodo.6399528
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://pymeasure.readthedocs.io/en/latest/index.html
https://pymeasure.readthedocs.io/en/latest/index.html
https://pymodbus.readthedocs.io/en/latest/index.html
https://pymodbus.readthedocs.io/en/latest/index.html
https://pyvisa.readthedocs.io/en/stable/
https://pypi.org/project/PyQt5/
https://doi.org/10.5281/zenodo.5574486
https://yaq.fyi
https://zeromq.org/
https://doi.org/10.21105/joss.02688

	Summary
	Statement of need
	Acknowledgements
	References

