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Summary

Many applications such as seismic and medical imaging, material sciences, or helioseismology
and planetary science, aim to reconstruct properties of a non directly accessible or non-visible
interior. For this purpose, they rely on waves whose propagation through a medium interrelates
with the physical properties (density, sound speed, etc.) of this medium. The methodology
for imaging with waves comprises of two main stages illustrated in Figure 1. In the data
acquisition stage (Figure 1a), the medium response to probing waves is recorded (e.g., seismic
waves from Earthquakes recorded by ground network). In the second stage, we rely on a
reconstruction procedure which iteratively updates an initial model of physical parameters,
so that numerical simulations approach the measurements (Figure 1b). This procedure is
employed, for instance, for seismic (reconstruction of subsurface layers) and medical (disease
diagnostic) imaging, see the introduction of Faucher & Scherzer (2020) and the references
therein.
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Figure 1: Illustration of inverse wave problems. a) Acquisition stage: probing waves are sent though
the medium, and the medium’s response is recorded by devices positioned on a portion of the domain.
b) The reconstruction algorithm starts from initial properties and compares simulations of wave
propagation with the measurements, then iteratively updates those properties. The green block
corresponds to the forward problem (modeling the propagation of waves) and the orange ones to
the iterative correction. hawen solves both the forward and inverse problems associated with time-
harmonic waves.
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Statement of need

hawen is designed to address large-scale inverse wave problems, and includes

1. simulating time-harmonic waves in heterogeneous media (e.g., visco-acoustic and visco-
elastic propagation, modal equations in helioseismology);

2. performing iterative minimization to solve the inverse problem, cf. Figure 1.

It combines MPI and OpenMP parallelism, it is deployed on supercomputers and has been
used in studies on seismic imaging (Faucher, Alessandrini, et al., 2020; Faucher, De Hoop, et
al., 2020; Faucher & Scherzer, 2020), as well as in helioseismology (Barucq et al., 2019, 2020;
Barucq, Faucher, Fournier, et al., 2020a, 2020b). The software works with an input parameter
file: a text file listing the problem configuration (dimension, choice of viscous model, etc.),
such that the computational details are transparent for the users. hawen has its dedicated
User’s guide (Faucher, 2020) that details its utilization and all the available functionalities, it
is available on the software dedicated website, which contains illustrations, installation guide
and tutorials.
One specificity of hawen is to implement the hybridizable discontinuous Galerkin (HDG)
method (Arnold et al., 2002; Cockburn et al., 2009) for the discretization of the wave equa-
tions. It helps reduce the cost of the computations by providing smaller linear systems com-
pared to, e.g., finite elements, depending on the order of approximation (Faucher & Scherzer,
2020; Kirby et al., 2012). For seismic applications, current software mostly relies on the
spectral element method (Komatitsch & Tromp, 1999; Komatitsch & Vilotte, 1998), such as
specfem, or on finite differences discretization.
The software handles unstructured domains (allowing input meshes of different formats) and
thus accounts for complex geometry. In addition, hawen relies on the massively parallel sparse
direct solver MUMPS (Amestoy et al., 2001, 2006) for the matrix factorization, hence handles
problems with many right-hand sides. Despite the technicality of the underlying methods,
the purpose of hawen is to provide a unified and evolutive framework to address large-scale
visco-elastic and visco-acoustic inverse problems, with a user-friendly interface using the input
parameter files.

Modeling the propagation of waves

The first feature of hawen is to simulate the propagation of time-harmonic waves in different
types of medium: this is the forward problem in Figure 1. The propagation of waves is
characterized by a Partial Differential Equation which depends on the type of the waves (e.g.,
mechanical or electromagnetic), and on the type of medium considered (e.g., fluid or solid)
(Carcione, 2007; Faucher, 2017; Slawinski, 2010). hawen handles visco-acoustic and visco-
elastic propagation, as well as waves propagation for helioseismology, these are described in the
User’s documentation (Faucher, 2020). Our implementation is based upon the HDG method
and the computational steps are illustrated in Figure 2.
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Inputs:
- domain geometry (mesh),
- propagation (e.g., acoustic),
- medium physical properties,
- source (e.g., position),
- choice of frequency,
- boundary conditions.

Parallelism:

the mesh cells
are distributed
among the mpi
processors.

Discretization:

Create the global
matrix associated
with HDG dis-
cretization.

Solver:

Solve the
linear system
with Mumps.

Save:

Save the
solution.

Illustrations:

Disk-domain of radius 1m, decomposed
in 3040 triangle cells. The wave speed
and density are constant c = 0.1m s−1,
ρ = 1000kg m−2. The point-source is po-
sitioned in the center.

Parallelism: one mpi proces-
sor handles a part of the do-
main, non-overlapping with
the other ones.

Real part of the pressure field
p solution to the acoustic prob-
lem (1) at 0.4Hz.

Figure 2: Illustration of the computational steps for the numerical resolution of the forward problem.
For simplicity, we illustrate with an homogeneous medium.

Inverse problem via iterative minimization

In the forward problem, the objective is to simulate the propagation of waves, given the
medium physical properties. Conversely, the objective of the inverse problem is to recover the
physical properties, given some observations of waves, see Figure 1. To address the inverse
problem, hawen solves the minimization problem:

min
m

J (m) with J (m) = dist
(
F(m), d

)
. (1)

The misfit function J is defined to evaluate a distance function comparing the observed data d
with simulations of wave propagation restricted to the position of the measurements: F(m),
where m represents the physical properties. The iterative minimization scheme successively
updates the physical properties used for the simulations (Figure 1b), and follows a Newton-
type method (Nocedal & Wright, 2006). In the context of seismic imaging, it is the Full
Waveform Inversion method, cf. Virieux & Operto (2009).
hawen offers several options to conduct the iterative minimization, such as the choice of misfit
function and method to conduct the minimization. These are further listed and detailed in
the software documentation (Faucher, 2020).
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