
cfdm: A Python reference implementation of the CF
data model
David Hassell1, 2 and Sadie L. Bartholomew1, 2

1 National Centre for Atmospheric Science, UK 2 University of Reading, UK
DOI: 10.21105/joss.02717

Software
• Review
• Repository
• Archive

Editor: Bruce E. Wilson
Reviewers:

• @bradyrx
• @clynnes

Submitted: 28 July 2020
Published: 12 October 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The cfdm open-source Python library (Hassell & Bartholomew, 2020) implements the data
model (Hassell, Gregory, Blower, Lawrence, & Taylor, 2017) of the CF (Climate and Forecast)
metadata conventions (Eaton et al., 2020) and so should be able to represent and manipulate
all existing and conceivable CF-compliant datasets.
The CF conventions are designed to promote the creation, processing, and sharing of climate
and forecasting data using Network Common Data Form (netCDF) files and libraries (Rew &
Davis, 1990; Rew, Hartnett, & Caron, 2006). They cater for data from model simulations
as well as from observations, made in situ or by remote sensing platforms, of the planetary
surface, ocean, and atmosphere. For a netCDF data variable, they provide a description of
the physical meaning of data and of its spatial, temporal, and other dimensional properties.
The CF data model is an abstract interpretation of the CF conventions that is independent
of the netCDF encoding.
The cfdm library has been designed as a stand-alone application, e.g. as deployed in the pre-
publication checks for the CMIP6 data request (Eyring et al., 2016; Juckes et al., 2020), and
also to provide a CF data model implementation to other software libraries, such as cf-python
(Hassell & Gregory, 2020).

Statement of need

The complexity of scientific datasets tends to increase with improvements in scientific capa-
bilities and it is essential that software interfaces are able to understand new research outputs.
To the authors’ knowledge, cfdm and software built on it are currently the only libraries that
can understand all CF-netCDF datasets, made possible by the complete implementation of
the CF data model. All others omit facets that are not currently of interest to their particular
user communities.

Functionality

NetCDF variables can be stored in a variety of representations (including the use of compression
techniques) but the CF data model, and therefore cfdm, transcends the netCDF encoding to
retain only the logical structure. A key feature of cfdm is that the in-memory representation
and user-facing API are unaffected by the particular choices made during dataset creation,
which are often outside of the user’s control.

Hassell et al., (2020). cfdm: A Python reference implementation of the CF data model. Journal of Open Source Software, 5(54), 2717.
https://doi.org/10.21105/joss.02717

1

https://doi.org/10.21105/joss.02717
https://github.com/openjournals/joss-reviews/issues/2717
https://github.com/NCAS-CMS/cfdm
https://doi.org/10.5281/zenodo.4075077
https://www.ornl.gov/staff-profile/bruce-e-wilson
https://github.com/bradyrx
https://github.com/clynnes
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02717


The latest version of the CF conventions (CF-1.8) is fully represented by cfdm, including
the recent additions of simple geometries (International Standards Organisation, 2004) and
netCDF group hierarchies.
The central element of the CF data model is the “field construct” that encapsulates all of
the data and metadata for a single variable. The cfdm library can create field constructs
ab initio, or read them from netCDF files; inspect, subspace, and modify in memory; and
write them to CF-netCDF dataset files. As long as it can interpret the data, cfdm does not
enforce CF-compliance, allowing non-compliant datasets to be read, processed, corrected, and
rewritten.
This represents a limited functionality in comparison to other software libraries used for anal-
ysis, which often include higher-level functions such as those for regridding and statistical
analysis, etc. The decision to restrict the functionality was made for the following reasons:

• The controlled functionality is sufficient for dataset inspection and creation, as well as
for modifying non-CF-compliant datasets, activities that are an important part of both
archive curation and data analysis workflows.

• An extended functionality could complicate the implementation, making it harder to
update the library as the CF data model evolves.

• The anticipation is that other libraries will build on cfdm, inheriting its knowledge of
the CF conventions and extending the API to add more sophisticated functions that are
appropriate to their users (notably cf-python).

Example usage

In this example, a netCDF dataset is read from disk and the resulting field construct is
inspected. The field construct is then subspaced, has its standard name property changed,
and finally is re-inspected and written to a new dataset on disk:

>>> import cfdm
>>> f = cfdm.read('file.nc')[0]
>>> print(f)
Field: specific_humidity (ncvar%q)
----------------------------------
Data : specific_humidity(latitude(5), longitude(8)) 1
Cell methods : area: mean
Dimension coords: latitude(5) = [-75.0, ..., 75.0] degrees_north

: longitude(8) = [22.5, ..., 337.5] degrees_east
: time(1) = [2019-01-01 00:00:00]

>>> g = f[0, 2:6]
>>> g.set_property('standard_name', 'relative humidity')
>>> print(g)
Field: relative humidity (ncvar%q)
----------------------------------
Data : relative humidity(latitude(1), longitude(4)) 1
Cell methods : area: mean
Dimension coords: latitude(1) = [-75.0] degrees_north

: longitude(4) = [112.5, ..., 247.5] degrees_east
: time(1) = [2019-01-01 00:00:00]

>>> cfdm.write(g, 'new_file.nc')

Hassell et al., (2020). cfdm: A Python reference implementation of the CF data model. Journal of Open Source Software, 5(54), 2717.
https://doi.org/10.21105/joss.02717

2

https://doi.org/10.21105/joss.02717


Evolution

The CF data model will evolve in line with the CF conventions and the cfdm library will need
to respond to such changes. To facilitate this, there is a core implementation (cfdm.cor
e) that defines an in-memory representation of a field construct, with no further features.
The implementation of an enhancement to the CF data model would proceed first with an
independent update to the core implementation, then with an update, outside of the inherited
core implementation, to the functionality for dataset interaction and further field construct
modification.

Extensibility

To encourage other libraries to build on cfdm, it has been designed to be subclassable so that
the CF data model representation is easily importable into third-party software. An important
part of this framework is the ability to inherit the mapping of CF data model constructs to, and
from, netCDF datasets. This is made possible by use of the bridge design pattern (Gamma,
Helm, Johnson, & Vlissides, 1995) that decouples the implementation of the CF data model
from the netCDF encoding so that the two can vary independently. Such an inheritance is
employed by the cf-python library, which adds many metadata-aware analytical capabilities
and employs a more sophisticated data class. By preserving the API of the cfdm data class,
the cf-python data class can be used within the inherited cfdm code base with almost no
modifications.

Acknowledgements

We acknowledge Bryan Lawrence and Jonathan Gregory for advice on the API and comments
that greatly improved this manuscript; Allyn Treshansky for suggesting improvements on the
use of cfdm in other libraries; and the CF community for their work on the CF conventions.
This work has received funding from the core budget of the UK National Centre for Atmo-
spheric Science, the European Commission Horizon 2020 programme (project “IS-ENES3”,
number 824084), the European Research Council (project “Couplet”, number 786427), and
Research Councils UK (project “UKFAFMIP”, number NE/R000727/1).

References

Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Caron, J., Signell, R., et al.
(2020, February). NetCDF Climate and Forecast (CF) Metadata Conventions v1.8. CF
Conventions Committee. Retrieved from http://cfconventions.org/Data/cf-conventions/
cf-conventions-1.8/cf-conventions.html

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K.
E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
experimental design and organization. Geoscientific Model Development, 9(5), 1937–
1958. doi:10.5194/gmd-9-1937-2016

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. USA: Addison-Wesley Longman Publishing Co., Inc.
ISBN: 0201633612

Hassell, D., & Bartholomew, S. L. (2020). cfdm: A Python reference implementation of the
CF data model. Zenodo. doi:10.5281/zenodo.4075077

Hassell et al., (2020). cfdm: A Python reference implementation of the CF data model. Journal of Open Source Software, 5(54), 2717.
https://doi.org/10.21105/joss.02717

3

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html
https://doi.org/10.5194/gmd-9-1937-2016
https://worldcat.org/isbn/0201633612
https://doi.org/10.5281/zenodo.4075077
https://doi.org/10.21105/joss.02717


Hassell, D., & Gregory, J. (2020). cf-python: A CF-compliant Earth Science data analysis
library. Zenodo. doi:10.5281/zenodo.832255

Hassell, D., Gregory, J., Blower, J., Lawrence, B. N., & Taylor, K. E. (2017). A data model of
the Climate and Forecast metadata conventions (CF-1.6) with a software implementation
(cf-python v2.1). Geoscientific Model Development, 10(12), 4619–4646. doi:10.5194/
gmd-10-4619-2017

International Standards Organisation. (2004). ISO 19125: Geographic Information – Simple
feature access – Part 1: Common architecture. Geneva: ISO.

Juckes, M., Taylor, K. E., Durack, P. J., Lawrence, B., Mizielinski, M. S., Pamment, A.,
Peterschmitt, J.-Y., et al. (2020). The CMIP6 Data Request (DREQ, version 01.00.31).
Geoscientific Model Development, 13(1), 201–224. doi:10.5194/gmd-13-201-2020

Rew, R., & Davis, G. (1990). NetCDF: An Interface for Scientific Data Access. IEEE Com-
puter Graphics and Applications, 10(4), 76–82. doi:10.1109/38.56302

Rew, R., Hartnett, E., & Caron, J. (2006). NetCDF-4: Software Implementing an Enhanced
Data Model for the Geosciences. In 22nd International Conference on Interactive Informa-
tion Processing Systems for Meteorology, Oceanography, and Hydrology. AMS. Retrieved
from https://www.unidata.ucar.edu/software/netcdf/papers/2006-ams.pdf

Hassell et al., (2020). cfdm: A Python reference implementation of the CF data model. Journal of Open Source Software, 5(54), 2717.
https://doi.org/10.21105/joss.02717

4

https://doi.org/10.5281/zenodo.832255
https://doi.org/10.5194/gmd-10-4619-2017
https://doi.org/10.5194/gmd-10-4619-2017
https://doi.org/10.5194/gmd-13-201-2020
https://doi.org/10.1109/38.56302
https://www.unidata.ucar.edu/software/netcdf/papers/2006-ams.pdf
https://doi.org/10.21105/joss.02717

	Summary
	Statement of need
	Functionality
	Example usage
	Evolution
	Extensibility
	Acknowledgements
	References

