
PyQMRI: An accelerated Python based Quantitative
MRI toolbox
Oliver Maier∗1, Stefan M Spann1, Markus Bödenler1, 2, and Rudolf
Stollberger1, 3

1 Institute of Medical Engineering, Graz University of Technology, Graz, Austria 2 Institute of
eHealth, University of Applied Sciences FH JOANNEUM, Graz, Austria 3 BioTechMed Graz, Austria

DOI: 10.21105/joss.02727

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @grlee77
• @agahkarakuzu
• @DARSakthi

Submitted: 02 October 2020
Published: 12 December 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Various medical examinations are seeing a shift to a more patient centric and personalized view,
based on quantitative instead of qualitative observations and comparisons. This trend has
also affected medical imaging, and particularly quantitative MRI (qMRI) gained importance
in recent years. qMRI aims to identify the underlying biophysical and tissue parameters
that determine contrast in an MR imaging experiment. In addition to contrast information,
qMRI permits insights into diseases by providing biophysical, microstructural, and functional
information in absolute quantitative values. For quantification, biophysical models are used,
which describe the relationship between image intensity and physical properties of the tissue for
certain scanning sequences and sequence parameters. By performing several measurements
with different sequence parameters (e.g. flip angle, repetition time, echo time) the related
inverse problem of identifying the tissue parameters sought can be solved.
Quantitative MR typically suffers from increased measurement time due to repeated imag-
ing experiments. Therefore, methods to reduce scanning time by means of optimal scanning
protocols and subsampled data acquisition have been extensively studied. However, these
approaches are typically associated with a reduced SNR, and can suffer from subsampling
artifacts. To address both aspects, it has been shown that the inclusion of a biophysical
model in the reconstruction process leads to much faster data acquisition, while simultane-
ously improving image quality. The inverse problem associated with this special reconstruction
approach requires dedicated numerical solution strategies (Block et al., 2009; Doneva et al.,
2010; Donoho, 2006; Lustig et al., 2007; Maier, Schoormans, et al., 2019; Roeloffs et al.,
2016; Sumpf, 2012), commonly known as model-based reconstruction. Model-based recon-
struction is based on variational modeling, and combines parallel imaging and compressed
sensing to achieve acceleration factors as high as 10x the speed of fully sampled acquisitions.
The method directly solves for the unknown parameter maps from raw k-space data. The
repeated transition from k-space to image-space, combined with the involved non-linear iter-
ative reconstruction techniques to identify the unknown parameters, often leads to prolonged
reconstruction times. This effect gets even more demanding if 3D image volumes are of
interest.
Recently, the upsurge of computationally powerful GPUs has led to a variety of GPU based
implementations to speed up computation time of highly parallelizeable operations (e.g., the
Fourier transformation in MRI (Knoll et al., 2014)). As model-based approaches possibly deal
with hundred Gigabytes of data (e.g. diffusion tensor imaging), available memory on current
GPUs (e.g. 12 GB) can be a limiting factor. Thus, most reconstruction and fitting algorithms
are applied in a slice-by-slice fashion to the volumetric data by taking a Fourier transformation
along a fully sampled acquisition direction, effectively yielding a set of 2D problems. Hence,

∗Corresponding author.

Maier et al., (2020). PyQMRI: An accelerated Python based Quantitative MRI toolbox. Journal of Open Source Software, 5(56), 2727.
https://doi.org/10.21105/joss.02727

1

https://doi.org/10.21105/joss.02727
https://github.com/openjournals/joss-reviews/issues/2727
https://github.com/IMTtugraz/PyQMRI
https://doi.org/10.5281/zenodo.4313301
https://kevinmoerman.org
https://github.com/grlee77
https://github.com/agahkarakuzu
https://github.com/DARSakthi
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02727

the additional information in form of the third dimension of volumetric data is neglected,
leading to a loss in performance.
To utilize full 3D information in advanced reconstruction and fitting algorithms on memory
limited GPUs, special solutions strategies are necessary to leverage the speed advantage, e.g.,
hiding memory latency of repeated transfers to/from the GPU to host memory. This can
be achieved using asynchronous execution strategies. However, correct synchronization of
critical operations can be error prone. To this end, we propose PyQMRI, a simple to use
Python toolbox for quantitative MRI.

Statement of need

PyQMRI aims at reducing the required reconstruction time by means of a highly parallelized
PyOpenCL (Klöckner et al., 2012) implementation of a state-of-the-art model-based recon-
struction and fitting algorithm, while maintaining the easy-to-use properties of a Python
package. In addition to processing small data (e.g. 2D slices) completely on the GPU, an
efficient double-buffering based solution strategy is implemented. Double-buffering allows
overlapping computation and memory transfer from/to the GPU, thus hiding the associated
memory latency. By overlapping the transferred blocks it is possible to pass on 3D informa-
tion utilizing finite differences based regularization strategies (Maier, Schloegl, et al., 2019).
Figure 1 shows a schematic of the employed double-buffering scheme. To make sure that this
asynchronous execution strategy yields the expected results, unit-testing is employed.

Figure 1: Simple double-buffering scheme using two separate command queues and overlaping trans-
fer/compute operations.

Currently, 3D acquisitions with at least one fully sampled dimension can be reconstructed
on the GPU, including stack-of-X acquisitions or 3D Cartesian based imaging. Of course
2D data can be reconstructed as well. The combination of reconstruction and non-linear
fitting is based on an iteratively regularized Gauss-Newton (IRGN) approach combined with
a primal-dual inner loop. Regularization strategies include total variation (TV) (Rudin et al.,
1992) and total generalized variation (TGV) (Bredies et al., 2010; Knoll et al., 2011) using
finite differences gradient operations. In addition to the combined reconstruction and fitting
algorithm from k-space data, PyQMRI can also be used to speed-up non-linear parameter
fitting of complex or real valued image data. The main advantage of fitting the complex
(k-space) data is that the assumed Gaussian noise characteristics for the commonly used L2

data fidelity term are valid. This is especially important for problems suffering from poor SNR,
e.g. Diffusion Tensor Imaging, where the wrong noise assumption can lead to significant errors
in the quantification process (Jones & Basser, 2004).
PyQMRI comes with several pre-implemented quantiative models. In addition, new models
can be introduced via a simple text file, utilizing the power of SymPy to generate numerical

Maier et al., (2020). PyQMRI: An accelerated Python based Quantitative MRI toolbox. Journal of Open Source Software, 5(56), 2727.
https://doi.org/10.21105/joss.02727

2

https://doi.org/10.21105/joss.02727

models as well as their partial derivatives in Python. Fitting can be initiated via a command line
interface (CLI) or by importing the package into a Python script. Due to PyQMRI’s OpenCL
backend, no vendor specific hardware restrictions are present. However, current limitations
of the gpyfft package, used to wrap the clfft, constrain the use to GPU devices only. A
switch to other clfft wrappers might solve this limitation in future releases, but gpyfft is
the only one that currently supports fast non-power-of-two transformations up to 13.
PyQMRI and its predecessors have been succesfully used in several scientific publications.
Examples include T1 quantification from subsampled radial FLASH and inversion-recovery
Look-Locker data (Maier, Schoormans, et al., 2019), diffusion tensor imaging (Maier, Spann,
Bogensperger, et al., 2020), and ongoing work on aterial spin labeling (Maier, Spann, Pinter,
Gattringer, Pirpamer, et al., 2020; Maier, Spann, Pinter, Gattringer, Hinteregger, et al., 2020),
as well as low-field T1 mapping at multiple fields using fast field-cycling MRI.

Related Work

The increased importance of qMRI is reflected by a multitude of open-source toolboxes, each
focusing on a subset or combination of qMRI applications. Most tools show a strong focus
on neurological applications (mostly brain) but are usually not limited to this application
area. hMRI (Tabelow et al., 2019) is Matlab based and builds upon SPM (Friston, 2007). It
extends the spatial registration and statistical inference capabilities of SPM by relaxometry and
quantification of the magnetisation transfer effect. mrQ (Mezer et al., 2013) offers relaxometry
combined with the ability to quantify the macromolecular tissue volume, apparent volume of
interacting water protons, and the water-surface interaction rate and is completely written
in Matlab. Another Matlab based project is qMRlab (Karakuzu et al., 2020) which offers a
multitude of quantification algorithms including relaxometry, diffusion imaging, quantitative
susceptibility mapping, field mapping, and quantitative magnetization transfer. It further
offers routines for visualization, simulation, and protocol optimization of quantitative MRI
examinations. Another Matlab based software is qmap (Hurley et al., 2011) which offers a
collection of tools for quantitative MRI.
qMRI is also present in the Python community with PyMRT (Metere & Möller, 2017) offering
tools for image analysis and relaxometry. Another powerful Pyhton package, with a focus on
neuroimaing, is DIPY (Garyfallidis et al., 2014), offering a multitude of ways to evaluated
diffusion and perfusion MRI data. Other software packages focus on fast execution and
fitting, like the QUIT (Wood, 2018) toolbox, which is entirely written in C++ to speed up
the computations. All of the above mentioned qMRI toolboxes have in common that they
usually require image data for the fitting process and, thus, are not suitable for accelerated
acquired data or require dedicated reconstruction algorithms prior to fitting.
A recent extensions to BART (Uecker et al., 2015) allows for T1 quantification from 2D
radially acquired inversion recovery Look-Locker data. The approach utilizes a model-based
reconstruction algorithm to estimate T1 directly from k-space (Wang et al., 2018, 2019).
Even though this approach can handle undersampled data and incorporates the whole MRI
acquisition pipeline, it is currently limited to this single quantification model.
To the best of the authors knowledge PyQMRI is the only available Python toolbox that offers
real 3D regularization in an iterative solver for model-based qMRI problems and for arbitrary
large volumetric data, while simultaneously utilizing the computation power of recent GPUs.
Further, the ability to use symbolic equations to generate new models seems to be unique as
other tools require modifications of the code to include new quantification models.

Maier et al., (2020). PyQMRI: An accelerated Python based Quantitative MRI toolbox. Journal of Open Source Software, 5(56), 2727.
https://doi.org/10.21105/joss.02727

3

https://doi.org/10.21105/joss.02727

Algorithms

PyQMRI deals with the following general problem structure:

min
u,v

1

2
∥A(u)− d∥22 + γ(α0∥∇u− v∥1,2,F + α1∥Ev∥1,2,F)

which includes a non-linear forward operator (A), mapping the parameters u to (complex)
data space d, and a non-smooth regularization functional due to the L1-norms of the T(G)V
functional (Bredies et al., 2010; Knoll et al., 2011). Setting α1 = 0 and v = 0 the problem
becomes simple TV regularization (Rudin et al., 1992). The gradient ∇ and symmetrized
gradient E operators are implemented using finite differences. To further improve the quality
of the reconstructed parameter maps PyQMRI uses a Frobenius norm to join spatial information
from all maps in the T(G)V functionals (Bredies, 2014; Knoll et al., 2017; Maier, Schoormans,
et al., 2019). Box constraints, limiting each unknown parameter in u to a physiological
meaningful range, can be set in conjunction with real or complex value constraints.
Following the Gauss-Newton approach a sequence k of linearized sub-problems of the form

min
u,v

1

2
∥DA|u=uku− d̃k∥22 + γk(α0∥∇u− v∥1,2,F + α1|∥Ev∥1,2,F) +

δk
2
∥u− uk∥2Mk

needs to be solved to find a solution of the overall problem. The matrix DA|u=uk = ∂A
∂u (u

k)
resembles the Jacobian of the system. The subproblems can be recast into a saddle-point
structure by application of the Fenchel duality

min
u

max
y

⟨Ku, y⟩+G(u)− F ∗(y),

and solved utilizing a well established primal-dual algorithm (Chambolle & Pock, 2011) com-
bined with a line-search (Malitsky & Pock, 2018) to speed-up convergence. Constant terms,
stemming from the linearization, are precomputed and fused with the data d, yielding d̃k.
The inclusion of the additional L2-norm penalty improves convexity of the subproblem and
resembles a Levenberg-Marquardt update for Mk = diag(DA|Tu=ukDA|u=uk). A graphical
representation of the involved steps is given in Figure 2. The regularization weights, regular-
ization type (TV/TGV), and the number of outer and inner iterations can be changed using a
plain text configuration file. It was shown by (Salzo & Villa, 2012) that the GN approach con-
verges with linear rate to a critical point for non-convex problems with non-differential penalty
functions if the initialization is sufficiently close. Thus a meaningful initial guess based on
physiological knowledge on the parameters u should be used to initialize the fitting, e.g. mean
T1 value of the tissue of interest.

Figure 2: Graphical representation of the employed regularized non-linear fitting procedure shown
for an exemplary T1 quantification problem. Ci describes complex coil sensitivity information, F
amounts to the sampling process including the Fourier transformation, and Sp equals the non-linear
relationship between image intensity and the unknown physical quantities (T1 and Proton Density
(PD)).

Maier et al., (2020). PyQMRI: An accelerated Python based Quantitative MRI toolbox. Journal of Open Source Software, 5(56), 2727.
https://doi.org/10.21105/joss.02727

4

https://doi.org/10.21105/joss.02727

Acknowledgements

Oliver Maier acknowledges grant support from the Austrian Academy of Sciences under award
DOC-Fellowship 24966.
The authors would like to acknowledge the NVIDIA Corporation Hardware grant support.

References

Block, K. T., Uecker, M., & Frahm, J. (2009). Model-Based Iterative Reconstruction for
Radial Fast Spin-Echo MRI. IEEE Trans. Med. Imaging, 28(11), 1759–1769. https:
//doi.org/10.1109/TMI.2009.2023119

Bredies, K. (2014). Recovering Piecewise Smooth Multichannel Images by Minimization
of Convex Functionals with Total Generalized Variation Penalty (pp. 44–77). https:
//doi.org/10.1007/978-3-642-54774-4_3

Bredies, K., Kunisch, K., & Pock, T. (2010). Total Generalized Variation. SIAM J. Imaging
Sci., 3(3), 492–526. https://doi.org/10.1137/090769521

Chambolle, A., & Pock, T. (2011). A First-Order Primal-Dual Algorithm for Convex Problems
with Applications to Imaging. J. Math. Imaging Vis., 40(1), 120–145. https://doi.org/
10.1007/s10851-010-0251-1

Doneva, M., Börnert, P., Eggers, H., Stehning, C., Sénégas, J., & Mertins, A. (2010). Com-
pressed sensing reconstruction for magnetic resonance parameter mapping. Magn. Reson.
Med., 64(4), 1114–1120. https://doi.org/10.1002/mrm.22483

Donoho, D. L. (2006). Compressed sensing. IEEE Trans. Inf. Theory, 52(4), 1289–1306.
https://doi.org/10.1109/TIT.2006.871582

Friston, K. (2007). CHAPTER 2 - Statistical parametric mapping. In K. FRISTON, J.
ASHBURNER, S. KIEBEL, T. NICHOLS, & W. PENNY (Eds.), Stat. Parametr. mapp.
(pp. 10–31). Academic Press. https://doi.org/10.1016/B978-012372560-8/50002-4

Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Walt, S. van der, Descoteaux, M., &
Nimmo-Smith, I. (2014). Dipy, a library for the analysis of diffusion MRI data. Front.
Neuroinform., 8. https://doi.org/10.3389/fninf.2014.00008

Hurley, S. A., Mossahebi Puroa, & Samsonov, A. A. (2011). Quantitative MRI analysis pack-
age. In Code repository. University of Wisconsin - Madison. https://www.medphysics.
wisc.edu/%C2%A0samsonov/qmap/doc/index.html

Jones, D. K., & Basser, P. J. (2004). “Squashing peanuts and smashing pumpkins”: How
noise distorts diffusion-weighted MR data. Magn. Reson. Med., 52(5), 979–993. https:
//doi.org/10.1002/mrm.20283

Karakuzu, A., Boudreau, M., Duval, T., Boshkovski, T., Leppert, I. R., Cabana, J.-F., Gagnon,
I., Beliveau, P., Pike, G. B., Cohen-Adad, J., & Stikov, N. (2020). qMRLab: Quantitative
MRI analysis, under one umbrella. Journal of Open Source Software, 5(53), 2343. https:
//doi.org/10.21105/joss.02343

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., & Fasih, A. (2012). PyCUDA
and PyOpenCL: A scripting-based approach to GPU run-time code generation. Parallel
Comput. https://doi.org/10.1016/j.parco.2011.09.001

Knoll, F., Bredies, K., Pock, T., & Stollberger, R. (2011). Second order total generalized
variation (TGV) for MRI. Magn. Reson. Med., 65(2), 480–491. https://doi.org/10.1002/
mrm.22595

Maier et al., (2020). PyQMRI: An accelerated Python based Quantitative MRI toolbox. Journal of Open Source Software, 5(56), 2727.
https://doi.org/10.21105/joss.02727

5

https://doi.org/10.1109/TMI.2009.2023119
https://doi.org/10.1109/TMI.2009.2023119
https://doi.org/10.1007/978-3-642-54774-4_3
https://doi.org/10.1007/978-3-642-54774-4_3
https://doi.org/10.1137/090769521
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1002/mrm.22483
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1016/B978-012372560-8/50002-4
https://doi.org/10.3389/fninf.2014.00008
https://www.medphysics.wisc.edu/%C2%A0samsonov/qmap/doc/index.html
https://www.medphysics.wisc.edu/%C2%A0samsonov/qmap/doc/index.html
https://doi.org/10.1002/mrm.20283
https://doi.org/10.1002/mrm.20283
https://doi.org/10.21105/joss.02343
https://doi.org/10.21105/joss.02343
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1002/mrm.22595
https://doi.org/10.1002/mrm.22595
https://doi.org/10.21105/joss.02727

Knoll, F., Holler, M., Koesters, T., Otazo, R., Bredies, K., & Sodickson, D. K. (2017). Joint
MR-PET Reconstruction Using a Multi-Channel Image Regularizer. IEEE Trans. Med.
Imaging. https://doi.org/10.1109/TMI.2016.2564989

Knoll, F., Schwarzl, A., Diwoky, C., & Sodickson, D. K. (2014). gpuNUFFT - an open-source
GPU library for 3D gridding with direct matlab interface. In ISMRM 23rd Annual Meeting,
4297.

Lustig, M., Donoho, D., & Pauly, J. M. (2007). Sparse MRI: The application of compressed
sensing for rapid MR imaging. Magn. Reson. Med. https://doi.org/10.1002/mrm.21391

Maier, O., Schloegl, M., Bredies, K., & Stollberger, R. (2019). 3D Model-Based Parameter
Quantification on Resource Constrained Hardware using Double-Buffering. Proc. 27th
Annu. Meet. ISMRM, Montréal, QC, Canada, 4839.

Maier, O., Schoormans, J., Schloegl, M., Strijkers, G. J., Lesch, A., Benkert, T., Block,
T., Coolen, B. F., Bredies, K., & Stollberger, R. (2019). Rapid T1 quantification from
high resolution 3D data with model-based reconstruction. Magn. Reson. Med. https:
//doi.org/10.1002/mrm.27502

Maier, O., Spann, S. M., Bogensperger, L., & Stollberger, R. (2020). Fast Simultaneous
Multi-Slice Multi-Shell Diffusion Tensor Imaging with Model-based Reconstruction. Proc.
28th Annu. Meet. ISMRM, First Virtual Meeting, 4365.

Maier, O., Spann, S. M., Pinter, D., Gattringer, T., Hinteregger, N., Enzinger, C., Pfeuffer,
J., Bredies, K., & Stollberger, R. (2020). Non-linear fitting with joint spatial regularization
in arterial spin labeling. http://arxiv.org/abs/2009.05409

Maier, O., Spann, S. M., Pinter, D., Gattringer, T., Pirpamer, L., Enzinger, C., Pfeuffer, J., &
Stollberger, R. (2020). Robust Perfusion Parameter Quantification from 3D Single-Shot
Multi-Delay ASL measurements. Proc. 28th Annu. Meet. ISMRM, First Virtual Meeting,
3290.

Malitsky, Y., & Pock, T. (2018). A First-Order Primal-Dual Algorithm with Linesearch. SIAM
J. Optim., 28(1), 411–432. https://doi.org/10.1137/16M1092015

Metere, R., & Möller, H. E. (2017). PyMRT and DCMPI: Two New Python Packages for
MRI Data Analysis. Proceedings of the International Society of Magnetic Resonance in
Medicine, 3816.

Mezer, A. D., Yeatman, J. N., Stikov, N. F., Kay, K. L., Cho, N.-J. H., Dougherty, R. A.,
Perry, M. undefined, Parvizi, J. undefined, Hua, L. undefined, Butts-Pauly, K. undefined,
& al., et. (2013). Quantifying the local tissue volume and composition in individual
brains with magnetic resonance imaging. Nature Medicine, 19(12), 1667–1672. https:
//doi.org/10.1038/nm.3390

Roeloffs, V., Wang, X., Sumpf, T. J., Untenberger, M., Voit, D., & Frahm, J. (2016). Model-
based reconstruction for T1 mapping using single-shot inversion-recovery radial FLASH.
Int. J. Imaging Syst. Technol., 26(4), 254–263. https://doi.org/10.1002/ima.22196

Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal
algorithms. Phys. D Nonlinear Phenom., 60(1-4), 259–268. https://doi.org/10.1016/
0167-2789(92)90242-F

Salzo, S., & Villa, S. (2012). Convergence analysis of a proximal Gauss-Newton method.
Comput. Optim. Appl., 53(2), 557–589. https://doi.org/10.1007/s10589-012-9476-9

Sumpf, T. (2012). Model-based T2 relaxometry using undersampled magnetic resonance
imaging (Vol. 43) [PhD thesis, Mensch und Buch]. https://doi.org/10.24355/dbbs.
084-201305311128-0

Tabelow, K., Balteau, E., Ashburner, J., Callaghan, M. F., Draganski, B., Helms, G., Kherif,
F., Leutritz, T., Lutti, A., Phillips, C., Reimer, E., Ruthotto, L., Seif, M., Weiskopf,

Maier et al., (2020). PyQMRI: An accelerated Python based Quantitative MRI toolbox. Journal of Open Source Software, 5(56), 2727.
https://doi.org/10.21105/joss.02727

6

https://doi.org/10.1109/TMI.2016.2564989
https://doi.org/10.1002/mrm.21391
https://doi.org/10.1002/mrm.27502
https://doi.org/10.1002/mrm.27502
http://arxiv.org/abs/2009.05409
https://doi.org/10.1137/16M1092015
https://doi.org/10.1038/nm.3390
https://doi.org/10.1038/nm.3390
https://doi.org/10.1002/ima.22196
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1007/s10589-012-9476-9
https://doi.org/10.24355/dbbs.084-201305311128-0
https://doi.org/10.24355/dbbs.084-201305311128-0
https://doi.org/10.21105/joss.02727

N., Ziegler, G., & Mohammadi, S. (2019). hMRI – A toolbox for quantitative MRI in
neuroscience and clinical research. Neuroimage, 194, 191–210. https://doi.org/10.1016/
j.neuroimage.2019.01.029

Uecker, M., Ong, F., Tamir, J. I., Bahri, D., Virtue, P., Cheng, J. Y., Zhang, T., & Lustig,
M. (2015). Berkeley Advanced Reconstruction Toolbox. Proceedings of the International
Society of Magnetic Resonance in Medicine, 2486.

Wang, X., Kohler, F., Unterberg-Buchwald, C., Lotz, J., Frahm, J., & Uecker, M. (2019).
Model-based myocardial T1 mapping with sparsity constraints using single-shot inversion-
recovery radial FLASH cardiovascular magnetic resonance. Journal of Cardiovascular Mag-
netic Resonance, 21(1). https://doi.org/10.1186/s12968-019-0570-3

Wang, X., Roeloffs, V., Klosowski, J., Tan, Z., Voit, D., Uecker, M., & Frahm, J. (2018).
Model-based T1 mapping with sparsity constraints using single-shot inversion-recovery
radial FLASH. Magnetic Resonance in Medicine, 79(2), 730–740. https://doi.org/10.
1002/mrm.26726

Wood, T. C. (2018). QUIT: QUantitative imaging tools. Journal of Open Source Software,
3(26), 656. https://doi.org/10.21105/joss.00656

Maier et al., (2020). PyQMRI: An accelerated Python based Quantitative MRI toolbox. Journal of Open Source Software, 5(56), 2727.
https://doi.org/10.21105/joss.02727

7

https://doi.org/10.1016/j.neuroimage.2019.01.029
https://doi.org/10.1016/j.neuroimage.2019.01.029
https://doi.org/10.1186/s12968-019-0570-3
https://doi.org/10.1002/mrm.26726
https://doi.org/10.1002/mrm.26726
https://doi.org/10.21105/joss.00656
https://doi.org/10.21105/joss.02727

	Summary
	Statement of need
	Related Work
	Algorithms
	Acknowledgements
	References

